RAS Chemistry & Material ScienceКоллоидный журнал Colloid Journal

  • ISSN (Print) 0023-2912
  • ISSN (Online) 3034-543X

CONTROL OF SELF-ORGANIZATION OF THIACALIX[4] CROWN-ETHERS IN CONE AND 1,3-ALTERNATE FORMS IN NANOFILMS ON QUARTZ SUBSTRATE

PII
S3034543XS0023291225020076-1
DOI
10.7868/S3034543X25020076
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 87 / Issue number 2
Pages
149-160
Abstract
Morphological characteristics of the nanolayers of amphiphilic tert-butylthiacalix[4]crown-4-ether in cone stereoisomeric form 1 and bolaamphiphilic nitrothiacalix[4]biscrown-5-ether in 1,3-alternate form 2 deposited onto quartz substrate at varying solvent, temperature, and concentration of compounds is analyzed. Quantum-chemical calculations of the considered calix[4]arenes reveal a favorable micellar aggregation (the packing factor p < 0.3). During AFM visualization of calixarene nanolayers prepared through evaporation of solvent on substrate, spherical associates that are 200-800 nm in size are detected for compound 1, which enlarge with a decrease in the concentration of compound and an increase in solvent polarity and environmental temperature. At the same time, the dispersity of the sizes of associates increases with a decrease in temperature, but has a mixed dependence on solvent and concentration. The most uniform size distribution of spherical particles is achieved upon Langmuir monolayer formation at the air-water interface upon deposition of the solution of compound 1 in 10-5 M solution in chloroform onto water subphase and upon vertical transfer onto substrate. In the case of bolaamphiphile 2, spherical associates are formed at t = 23°C in 10-5 М solution in toluene and at 4°С in 10-4 М solution in chloroform, while under other combinations of conditions, the nanofilm is represented by thread-like structures (at 23°С) and tactoid aggregates (at 4°С). Dynamic light scattering study of the solutions of amphiphile 1 in chloroform allows to detect spherical aggregates (particle size is 202 ± 92 nm), which indicates the decisive role of solvent in the formation of spherical aggregates in nanolayers, while in other cases the supramolecular organization of calixarenes is presumably affected by the interaction with substrate.
Keywords
тиакаликс[4]краун-эфиры мицеллярные ассоциаты атомно-силовая микроскопия динамическое рассеяние света
Date of publication
11.02.2025
Year of publication
2025
Number of purchasers
0
Views
21

References

  1. 1. Ovsyannikov A., Solovieva S., Antipin I., Ferlay S. Coordination polymers based on calixarene derivatives: structures and properties // Coord. Chem. Rev. 2017. V. 352. P. 151-186. https://doi.org/10.1016/j.ccr.2017.09.004
  2. 2. Arnott G.E. Inherently chiral calixarenes: synthesis and applications // Chem. Eur. J. 2018. V. 24. P. 1744-1754. https://doi.org/10.1002/chem.201703367
  3. 3. Dalcanale E., Pinalli R., Pedrini A. Environmental gas sensing with cavitands // Chem. Eur. J. 2018. V. 24. № 5. P. 1010-1019. https://doi.org/10.1002/chem.201703630
  4. 4. Lou X.-Y., Li Y.-P., Yang Y.-W. Gated materials: installing macrocyclic arenes-based supramolecular nanovalves on porous nanomaterials for controlled cargo release // Biotechnol. J. 2019. V. 14. № 1. P. 1800354. https://doi.org/10.1002/biot.201800354
  5. 5. Kim H.J., Lee M.H., Mutihac L., Vicens J., Kim, J.S. Host-guest sensing by calixarenes on the surfaces // Chem. Soc. Rev. 2012. V. 41. P. 1173-1190. https://doi.org/10.1039/C1CS15169J
  6. 6. Csokai V., Grün A., Parlagh G., Bitter I. Synthesis and alkali cation extraction ability of 1,3-altthiacalix[4] mono(crown) ethers // Tetrahedron Lett. 2002. V. 43. № 42. P. 7627-7629. https://doi.org/10.1016/S0040-4039 (02)01594-0
  7. 7. Muravev A., Yakupov A., Gerasimova T., Nugmanov R., Trushina E., Babaeva O., Nizameeva G., Syakaev V., Katsyuba S., Selektor S., Solovieva S., Antipin I. Switching ion binding selectivity of thiacalix[4]arene monocrowns at liquid-liquid and 2D-confined interfaces // Int. J. Mol. Sci. 2021. V. 22. № 7. P. 3535. https://doi.org/10.3390/ijms22073535
  8. 8. Tian H.-W., Liu Y.-C., Guo D.-S. Assembling features of calixarene-based amphiphiles and supra-amphiphiles // Mater. Chem. Front. 2020. V. 4. № 1. P. 46-98. https://doi.org/10.1039/c9qm00489k
  9. 9. Muravev A.A., Solovieva S.E., Kochetkov E.N., Mel’nikova N.B., Safiullin R.A., Kadirov M.K., Latypov S.K., Antipin I.S., Konovalov A.I. Thiacalix[4] monocrowns substituted by sulfur-containing anchoring groups: new ligands for gold surface modification // Macroheterocycles. 2013. V. 6. № 4. P. 302-307. https://doi.org/10.6060/mhc131269m
  10. 10. Li H., Chen Y., Tian D., Gao Z. The synthesis of novel polysiloxanes with pendant hand-basket type calix[6] crowns and their transporting properties for metal ions in a liquid membrane // J. Membrane Sci. 2008. V. 310. P. 431-437. https://doi.org/10.1016/j.memsci.2007.11.013
  11. 11. Levitskaia T.G., Lamb J.D., Fox K.L., Moyer B.A. Selective carrier-mediated cesium transport through polymer inclusion membranes by calix[4]arene-crown-6 carriers from complex aqueous mixtures // Radiochim. Acta. 2002. V. 90. № 1. P. 43-52. https://doi.org/10.1524/ract.2002.90.1_2002.43
  12. 12. Guan B., Jiang M., Yang X., Liang Q., Chen Y. Self-assembly of amphiphilic calix[6]crowns: from vesicles to nanotubes // Soft Matter. 2008. V. 4. № 7. P. 1393-1395. https://doi.org/10.1039/b805312j
  13. 13. Dalgarno S.J., Hardie M.J., Warren J.E., Raston C.L. Lanthanide crown ether complexes of p-sulfonatocalix[5] arene // Dalton Trans. 2004. V. 33. № 16. P. 2413-2416. https://doi.org/10.1039/B407207C
  14. 14. Zheng Q.-Y., Chen C.-F., Huang Z.-T. Synthesis of new chromogenic calix[4]crowns and molecular recognition of alkylamines // Tetrahedron. 1997. V. 53. № 30. P. 10345-10356. https://doi.org/10.1016/S0040-4020 (97)00653-4
  15. 15. van Leeuwen F.W.B., Beijleveld H., Kooijman H., Spek A.L., Verboom W., Reinhoudt D.N. Synthesis and conformational evaluation of p-tert-butylthia-calix[4]arene-crowns // J. Org. Chem. 2004. V. 69. № 11. P. 3928-3936. http://doi.org/10.1021/jo0401220
  16. 16. Muravev A., Galieva F., Bazanova O., Sharafutdinova D., Solovieva S., Antipin I., Konovalov A. Thiacalix[4]monocrowns with terpyridine functional groups as new structural units for luminescent polynuclear lanthanide complexes // Supramol. Chem. 2016. V. 28. № 5-6. P. 589-600. https://doi.org/10.1080/10610278.2016.1150593
  17. 17. Solovieva S.E., Murav’ev A.A., Latypov S.K., Antipin I., Konovalov A. Thiacalix-monocrown ethers with terminal functional groups at the lower rim: synthesis and structure // Dokl. Chem. 2016. V. 438. P. 170-174. https://doi.org/10.1134/S0012500811060061
  18. 18. Csokai V., Grün A., Bitter I. Unprecedented cyclisations of calix[4]arenes with glycols under the Mitsunobu protocol. Part 1: A new perspective for the synthesis of calixcrowns // Tetrahedron Lett. 2003. V. 44. № 25. P. 4681-4684. https://doi.org/10.1016/S0040-4039 (03)01077-3
  19. 19. Muravev A., Gerasimova T., Fayzullin R., Babaeva O., Rizvanov I., Khamatgalimov A., Kadirov M., Katsyuba S., Litvinov I., Latypov S., Solovieva S., Antipin I. Thermally stable nitrothiacalixarene chromophores: Conformational study and aggregation behavior // Int. J. Mol. Sci. 2020. V. 21. № 18. P. 6916. https://doi.org/10.3390/ijms21186916
  20. 20. Tirado-Rives J., Jorgensen W.L. Performance of B3LYP density functional methods for a large set of organic molecules // J. Chem. Theory Comput. 2008. V. 4. № 2. P. 297-306. https://doi.org/10.1021/ct700248k
  21. 21. Grimme S. Density functional theory with London dispersion corrections // Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011. V. 1. № 2. P. 211-228. https://doi.org/10.1002/wcms.30
  22. 22. Neese F. The ORCA program system // Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012. V. 2. № 1. P. 73-78. https://doi.org/10.1002/WCMS.81
  23. 23. Neese F., Wenmohs F., Hansen A., Becker U. Efficient, approximate and parallel Hartree-Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree-Fock exchange // Chem. Phys. 2009. V. 356. № 1-3. P. 98-109. https://doi.org/10.1016/j.chemphys.2008.10.036
  24. 24. Neese F. An improvement of the resolution of the identity approximation for the formation of the Coulomb matrix // J.Comput. Chem. 2003. V. 24. № 14. P. 1740-1747. https://doi.org/10.1002/jcc.10318
  25. 25. Pracht P., Grimme S., Bannwarth C., Bohle F., Ehlert S., Feldmann G., Gorges J., Müller M., Neudecker T., Plett C., Spicher S., Steinbach P., Wesołowski P.A., Zeller F. CREST-A program for the exploration of low-energy molecular chemical space // J. Chem. Phys. 2024. V. 160. № 11. P. 114110. https://doi.org/10.1063/5.0197592
  26. 26. Bannwarth C., Ehlert S., Grimme S. GFN2-xTB-An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions // J. Chem. Theory Comput. 2019. V. 15. № 3. P. 1652-1671. https://doi.org/10.1021/acs.jctc.8b01176
  27. 27. Ehlert S., Stahn M., Spicher S., Grimme S. Robust and efficient implicit solvation model for fast semiempirical methods // J. Chem. Theory Comput. 2021. V. 17. № 7. P. 4250-4261. https://doi.org/10.1021/acs.jctc.1c00471
  28. 28. Takano Y., Houk K.N. Benchmarking the Conductor-like Polarizable Continuum Model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules // J. Chem. Theory Comput. 2005. V. 1. № 1. P. 70-77. https://doi.org/10.1021/ct049977a
  29. 29. Parshad B., Prasad S., Bhatia S., Mittal A., Pan Y., Mishra P. K., Sharma S. K., Fruk L. Non-ionic small amphiphile based nanostructures for biomedical applications // RSC Adv. 2020. V. 10. № 69. P. 42098-42115. https://doi.org/10.1039/d0ra08092f
  30. 30. Pisagatti I., Barbera L., Gattuso G., Patane S., Parisi M.F., Notti A. Novel PEGylated calix[5]arenes as carriers for RoseBengal // Supramol. Chem. 2018. V. 30. № 8. P. 658-663. https://doi.org/10.1080/10610278.2018.1455976
  31. 31. Liu F., Wang Y., Lu G.Y. Bilayer vesicle formation in ethanol from calix[4]arene derivative with two guanidinium groups // Chem. Lett. 2005. V. 34. № 10. P. 1450-1451. https://doi.org/10.1246/cl.2005.1450
  32. 32. Morozova Ju.E., Syakaev V.V., Kazakova E.Kh., Shalaeva Ya.V., Nizameev I.R., Kadirov M.K., Voloshina A.D., Zobova V.V., Konovalova A.I. Amphiphilic calixresorcinarene associates as effective solubilizing agents for hydrophobic organic acids: construction of nano-aggregates // Soft Matter. 2016. V. 12. № 25. P. 5590-5599. https://doi.org/10.1039/C6SM00719H
  33. 33. Botnar A.A., Novikov O.P., Korepanov O.A., Muraveva E.A., Kozodaev D.A., Novikov A.S., Nosonovsky M., Skorb E.V., Muravev A.A. Crystallization control of anionic thiacalixarenes on silicon surface coated with cationic poly(ethyleneimine) // Langmuir. 2024. V. 40. № 46. P. 24634-24643. https://doi.org/10.3390/ijms21186916
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library