- PII
- S3034543XS0023291225020065-1
- DOI
- 10.7868/S3034543X25020065
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 87 / Issue number 2
- Pages
- 142-148
- Abstract
- The paper presents the results of a study of microscopic collective excitations in low-density amorphous ice obtained by molecular dynamics simulation based on the monatomic ML-mW model of the intermolecular interaction potential. The calculated spectra of longitudinal C(k, ω) and transverse C(k, ω) currents reveal the presence of propagating collective excitations of longitudinal and transverse polarizations in amorphous ice for a wide range of wavenumbers. The region of mixing of longitudinal and transverse collective modes in low-density amorphous ice is established. It is shown that the temperature dependence of the gap width k in the dispersion law of transverse acoustic-like modes is described by a linear dependence.
- Keywords
- молекулярная динамика аморфный лед низкой плотности коллективные возбуждения законы дисперсий
- Date of publication
- 08.01.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 14
References
- 1. Montfrooij W. and de Schepper I. Excitations in simple liquids, liquid metals and superfluids. New York: Oxford University Press, 2010.
- 2. Pines D. Elementary excitations in solids. New York -Amsterdam: W.A. Benjamin Inc, 1963.
- 3. Boon J.P., Yip S. Molecular Hydrodynamics. New York: McGraw-Hill, 1980.
- 4. Boinovich L.B., Emelyanenko A.M. Forces due to dynamic structure in thin liquid films // Adv. Colloid Interf. Sci. 2002. V. 96. P. 37-58. https://doi.org/10.1016/s0001-8686 (01)00074-4
- 5. Френкель Я.И. Кинетическая теория жидкостей. Ленинград: Наука, 1975.
- 6. Barrat J.-L. and Hansen J.-P. Basic concepts for simple and complex liquids. Cambridge: University Press, 2003.
- 7. Balucani U. and Zoppi M. Dynamics of the liquid state. Oxford: Clarendon Press, 1994.
- 8. Brazhkin V.V., Trachenko K. Collective excitations and thermodynamics of disordered state: New insights into an old problem // J. Phys. Chem. B. 2014. V. 118. P. 11417-11427. https://doi.org/10.1021/jp503647s
- 9. Trachenko K., Brazhkin V.V. Collective modes and thermodynamics of the liquid state // Rep. Prog. Phys. 2016. V. 79. P. 016502. https://doi.org/10.1088/0034-4885/79/1/016502
- 10. Хуснутдинов Р.М., Мокшин А.В. Атомарные коллективные возбуждения в жидком свинце // Письма в ЖЭТФ. 2014. Т. 100. С. 42. https://doi.org/10.7868/S0370274X14130086
- 11. March N.H. Liquid metals: Concepts and theory. Cambridge: Cambridge University Press, 1990.
- 12. Levesque D., Verlet L., Kurkijarvi J.Computer “experiments” on classical fluids. iv. transport properties and time-correlation functions of the Lennard-Jones liquid near its triple point // Phys. Rev. A. 1973. V. 7. P. 1690. https://doi.org/10.1103/PhysRevA.7.1690
- 13. Hosokawa S., Munejiri S., Inui M., Kajihara Y., Pilgrim W.-C., Ohmasa Y., Tsutsui S., Baron A.Q.R., Shimojo F., Hoshino K. Transverse excitations in liquid Sn // J. Phys. Condens. Matter. 2013. V. 25. P. 112101. https://doi.org/10.1088/0953-8984/25/11/112101
- 14. Hosokawa S., Munejiri S., Inui M., Kajihara Y., Pilgrim W.-C., Baron A.Q.R., Shimojo F., Hoshino K. Transverse excitations in liquid metals // AIP Conf. Proc. 2013. V. 1518. P. 695-702. https://doi.org/10.1063/1.4794661
- 15. Hosokawa S., Inui M., Kajihara Y., Tsutsui S., Baron A.Q.R. Transverse excitations in liquid Fe, Cu and Zn // J. Phys.: Condens. Matter. 2015. V. 27. P. 194104. https://doi.org/10.1088/0953-8984/27/19/194104
- 16. Rahman A., Stillinger F.H. Propagation of sound in water. A molecular-dynamics study // Phys. Rev. A. 1974. V. 10. P. 368. https://doi.org/10.1103/PhysRevA.10.368
- 17. Sette F., Ruocco G., Krisch M., Masciovecchio C., Verbeni R., Bergmann U. Collective dynamics in water by high energy resolution inelastic X-Ray scattering // Phys. Rev. Lett. 1995. V. 75. P. 850. https://doi.org/10.1103/PhysRevLett.75.850
- 18. Ricci M.A., Rocca D., Ruocco G., Vallauri R. Collective dynamical properties of liquid water // Phys. Rev. Lett. 1988. V. 61. P. 1958. https://doi.org/10.1103/PhysRevLett.61.1958
- 19. Sastry S., Sciortino F., Stanley H.E. Collective excitations in liquid water at low frequency and large wave vector // J. Chem. Phys. 1991. V. 95. P. 7775-7776. https://doi.org/10.1063/1.461354
- 20. Bertolini D., Tani A. Generalized hydrodynamics and the acoustic modes of water: Theory and simulation results // Phys. Rev. E. 1995. V. 51. P. 1091. https://doi.org/10.1103/PhysRevE.51.1091
- 21. Petrillo C., Sacchetti F., Dorner B., Suck J.-B. High-resolution neutron scattering measurement of the dynamic structure factor of heavy water // Phys. Rev. E. 2000. V. 62. P. 3611. https://doi.org/10.1103/PhysRevE.62.3611
- 22. Sacchetti F., Suck J.-B., Petrillo C., Dorner B. Brillouin neutron scattering in heavy water: Evidence for two-mode collective dynamics // Phys. Rev. E. 2004. V. 69. P. 061203. https://doi.org/10.1103/PhysRevE.69.061203
- 23. Chan H., Cherukara M.J., Narayanan B., Loeffler T.D., Benmore C., Gray S.K., Sankaranarayanan S. Machine learning coarse grained models for water // Nat.Commun. 2019. V. 10. P. 379. https://doi.org/10.1038/s41467-018-08222-6
- 24. Molinero V., Moore E.B. Water Modeled As an Intermediate Element between Carbon and Silicon // J. Phys. Chem. B. 2009. V. 113. P. 4008-4016. https://doi.org/10.1021/jp805227c
- 25. Yunusov M.B., Khusnutdinoff R.M. Neural network model for predicting the atomization energy of multi-atomic molecules based on sorted Coulomb matrices // High Energy Chemistry. 2024. V. 58. P. S286. https://doi.org/10.1134/S0018143924701017
- 26. Mallamace F., Corsaro C., Stanley H.E. Possible relation of water structural relaxation to water anomalies // PNAS. 2013. V. 110. P. 4899. https://doi.org/10.1073/pnas.1221805110
- 27. Хуснутдинов Р.М. Микроскопическая коллективная динамика воды // Коллоид. журн. 2016. Т. 78. № 2. С. 208. https://doi.org/10.7868/S0023291216010092
- 28. Guthrie M., Tulk C.A., Benmore C.J., Klug D.D. A structural study of very high-density amorphous ice // Chem. Phys. Lett. 2004. V. 397. P. 335. https://doi.org/10.1016/j.cplett.2004.07.116
- 29. Хуснутдинов Р.М. Динамика сетки водородных связей при электрокристаллизации воды // Коллоид. журн. 2013. Т. 75. № 6. С. 792. https://doi.org/10.7868/s0023291213060062
- 30. Хуснутдинов Р.М. Структурные и динамические особенности воды и аморфного льда // Коллоид. журн. 2017. Т. 79. № 1. С. 104. https://doi.org/10.7868/S0023291217010074
- 31. Mishima O. Polyamorphism in water // Proc. Jpn. Acad., Ser. B. 2010. V. 86. P. 165. https://doi.org/10.2183/pjab.86.165