RAS Chemistry & Material ScienceКоллоидный журнал Colloid Journal

  • ISSN (Print) 0023-2912
  • ISSN (Online) 3034-543X

ON THE CALCULATION OF ELECTROKINETIC POTENTIAL IN DETONATION NANODIAMOND DISPERSIONS

PII
S3034543XS0023291225020043-1
DOI
10.7868/S3034543X25020043
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 87 / Issue number 2
Pages
118-127
Abstract
The applicability of various approximations of the theory of electrophoresis for calculating the electrokinetic potential in real nanodisperse systems was evaluated on the example of the polydispersed aqueous sol of thermooxidized detonation nanodiamond containing aggregates of nanoparticles, depending on the concentration and pH of background electrolyte solutions (NaCl). It was found that at low potentials |ζ| < 25 mV calculated for the primary particles in the framework of the Wiersema’s model, taking into account particle aggregation and aggregate porosity practically does not affect the electrokinetic potential. In the range |ζ| 25-50 mV, the most reliable values of the electrokinetic potentials of aggregates seem to be obtained using the Miller’s equation for ion-conducting particles, taking into account their real porosities providing that the potential is constant. At |ζ| > 50 mV, knowing the real size of the aggregates, assuming that they are monolithic, the Overbeek’s equation with Oshima’s analytical expressions of the functions f(κr) and f(κr) can be used to calculate the electrokinetic potentials.
Keywords
детонационный наноалмаз первичная наночастица агрегат электрофоретическая подвижность электрокинетический потенциал теория электрофореза
Date of publication
27.12.2024
Year of publication
2024
Number of purchasers
0
Views
19

References

  1. 1. Xu J., Chow E. Biomedical applications of nanodiamonds: From drug-delivery to diagnostics // SLAS Technology. 2023. V. 28. № 4. P. 214-222. https://doi.org/10.1016/j.slast.2023.03.007
  2. 2. Wang X., Sang D., Zou L. et al. Multiple bioimaging applications based on the excellent properties of nanodiamond: A Review // Molecules. 2023. V. 28. P. 4063. https://doi.org/10.3390/molecules28104063
  3. 3. Turcheniuk K., Mochalin V.N. Biomedical applications of nanodiamond // Nanotechnology. 2017. V. 28. P. 252001-252027. https://doi.org/10.1088/1361-6528/aa6ae4
  4. 4. Pan F., Khan M., Ragab A.H. et al. Recent advances in the structure and biomedical applications of nanodiamonds and their future perspectives // Materials & Design. 2023. V. 233. P. 112179. https://doi.org/10.1016/j.matdes.2023.112179
  5. 5. Kryshtal A.P., Mchedlov-Petrossyan N.O, Laguta A.N. et al. Primary detonation nanodiamond particles: Their core-shell structure and the behavior in organo-hydro-sols // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. V. 614. P. 126079. https://doi.org/10.1016/j.colsurfa.2020.126079
  6. 6. Mchedlov-Petrossyan N.O., Kriklya N.N., Kryshtal A.P. et al. The interaction of the colloidal species in hydrosols of nanodiamond with inorganic and organic electrolytes // Journal of Molecular Liquids. 2019. V. 283. P. 849-859. https://doi.org/10.1016/j.molliq.2019.03.095
  7. 7. Mchedlov-Petrossyan N.O., Kriklya N.N., Laguta A.N., Osawa E. Stability of detonation nanodiamond colloid with respect to inorganic electrolytes and anionic surfactants and solvation of the particles surface in DMSO-H2O organo-hydrosols // Liquids. 2022. V. 2. P. 196-209. https://doi.org/10.3390/liquids2030013
  8. 8. Kulvelis Yu.V., Shvidchenko A.V., Aleksenskii A.E. Stabilization of detonation nanodiamonds hydrosol in physiological media with poly(vinylpyrrolidone) // Diamond and Related Materials. 2018. V. 87. P. 78-89. https://doi.org/10.1016/j.diamond.2018.05.012
  9. 9. Соболева О.А. Устойчивость гидрозолей детонационных наноалмазов в присутствии солей и поверхностно-активных веществ // Коллоидный журнал. 2018. Т. 80. № 3. С. 338-343. https://doi.org/10.7868/S0023291218030114
  10. 10. Сычёв Д.Ю., Жуков А.Н., Голикова Е.В., Суходолов Н.Г. Влияние простых электролитов на коагуляцию гидрозолей монодисперсного отрицательно заряженного детонационного наноалмаза // Коллоидный журнал. 2017. Т. 79. № 6. С. 785-791. https://doi.org/10.7868/S0023291217060118
  11. 11. Gareeva F., Petrova N., Shenderova O., Zhukov A. Electrokinetic properties of detonation nanodiamond aggregates in aqueous KCl solutions // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014. V. 440. P. 202-207. https://doi.org/10.1016/j.colsurfa.2012.08.055
  12. 12. Petrova N., Zhukov A., Gareeva F. et al.Interpretation of electrokinetic measurements of nanodiamond particles // Diamond & Related Materials. 2012. V. 30. P. 62-69. https://doi.org/10.1016/j.diamond.2012.10.004
  13. 13. Жуков А.Н., Гареева Ф.Р., Алексенский А.Е. Комплексное исследование электроповерхностных свойств агломератов детонационного наноалмаза в водных растворах КСl // Коллоидный журнал. 2012. Т. 74. № 4. C. 483-491.
  14. 14. Швидченко А.В., Дидейкин А.Т., Жуков А.Н. Конденсация противоионов в гидрозолях монокристаллических частиц детонационного наноалмаза, полученных отжигом агломератов в атмосфере воздуха // Коллоидный журнал. 2017. Т. 79. № 4. С. 521-524. https://doi.org/10.7868/S0023291217040140
  15. 15. Патент RU2599665C2, 15.10.2013.
  16. 16. Волкова А.В., Белобородов А.А., Водолажский В.А. и др. Влияние рН и концентрации индифферентного электролита на агрегативную устойчивость водного золя детонационного алмаза // Коллоидный журнал. 2024. Т. 86. № 2. С. 169-192. https://doi.org/10.31857/S0023291224020031
  17. 17. Lyklema J. Fundamental of Interface and Colloid Science V. 2. Solid-Liquid Interfaces. London: Academic Press. 1995.
  18. 18. Ohshima H. A simple expression for Henry’s function for the retardation effect in electrophoresis of spherical colloidal particles // Journal of Colloid and Interface Science. 1994. V. 168. P. 269-271. https://doi.org/10.1006/jcis.1994.1419
  19. 19. Wiersema P.H., Loeb A.L., Overbeek J.Th.G. Calculation of the electrophoretic mobility of a spherical colloid particle // Journal of Colloid and Interface Science. 1966. V. 22. P. 78-99. https://doi.org/10.1016/0021-9797 (66)90069-5
  20. 20. Overbeek J. T. G. Theorie der Elektrophorese // Fortschrittsberichte über Kolloide und Polymere. Kolloid-Beihefte. 1943. V. 54. № 7-9. P. 287- 364. https://doi.org/10.1007/bf02556774
  21. 21. Ohshima H. Approximate analytic expression for the electrophoretic mobility of a spherical colloidal particle // Journal of Colloid and Interface Science. 2001. V. 239. P. 587-590. https://doi.org/10.1006/jcis.2001.7608
  22. 22. Levine S., Neale G.H. The prediction of electrokinetic phenomena within multiparticle systems. I. Electrophoresis and electroosmosis // Journal of Colloid and Interface Science. 1974. V. 47. № 2. P. 520-529. https://doi.org/10.1016/0021-9797 (74)90284-7
  23. 23. Miller N.P., Berg J.C., O’Brien R.W. The electrophoretic mobility of a porous aggregate // Journal of Colloid and Interface Science. 1992. V. 153. № 1. P. 237-243. https://doi.org/10.1016/0021-9797 (92)90315-D
  24. 24. Neale G.H., Nader W.K. Prediction of transport processes within porous media: Diffusive flow processes within an homogeneous swarm of spherical particles // AIChE Journal. 1973. V. 19. P. 112-119. https://doi.org/10.1002/aic.690190116
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library