RAS Chemistry & Material ScienceКоллоидный журнал Colloid Journal

  • ISSN (Print) 0023-2912
  • ISSN (Online) 3034-543X

Generation of latex particles and phase formation in a heterogeneous static monomer–water system

PII
S3034543XS0023291225010064-1
DOI
10.7868/S3034543X25010064
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 87 / Issue number 1
Pages
53-58
Abstract
The aim of this work is to find new ways to synthesize latexes (polymer suspensions) with a given size and surface structure of particles. The need for such latexes is not large-scale, but their development and production are extremely important for the development of high technologies. Monodisperse latexes are especially valuable in immunological diagnostics of a wide range of diseases. The article presents the results of studies of the nucleation of latex particles in a heterogeneous monomer–water system. The results of these studies made it possible to find conditions for the reproducible synthesis of monodisperse polystyrene latexes. In order to change the surface structure of latex particles, cetyl alcohol was dissolved in the initial monomer phase (styrene). The article presents the results of electron microscopic studies of the synthesized latexes. Nano crystals of this alcohol are clearly visible on the surface of the latex particles. It is suggested that, in deep monomer conversions, the process of crystallization of cetyl alcohol begins in polymer-monomer particles.
Keywords
полимеризация латекс цетиловый спирт стирол фазобразование кристаллизация интерфейс
Date of publication
01.01.2025
Year of publication
2025
Number of purchasers
0
Views
24

References

  1. 1. Harkins W.D. General theory of mechanism of emulsion polymerization. II // J. Polym. Sci. 1950. V. 5. P. 217–251. https://doi.org/10.1002/pol.1950.120050208
  2. 2. Fitch R.M., Tsai C.H. Homogeneous nucleation of polymer colloids: the sole of soluble oligomeric radicals //Amer. Chem. Soc. Polym. Prep. 1970. V. II. P. 811–816.
  3. 3. Hansen F.K., Ugelstad J. Particle nucleation in emulsion polymerization. I. Theory for homogeneous nucleation // J. Polym. Sci., Polym. Chem. Ed. 1978 V. 16. № 8. P. 1953–1979. https://doi.org/10.1002/pol.1978.170160814
  4. 4. Grant T.D. Shouldice, Gerald A. Vandezande, Alfred Rudin. Practical aspects of the emulsifier-free emulsion polymerization of styrene // Eur. Polym. J. 1994. V. 30. № 2. P. 179–183. https://doi.org/10.1016/0014-3057 (94)90157-0
  5. 5. Ali Safinejad, Saeed Pourmahdian, Behzad Shirkavand Hadavand. Emulsifier-free emulsion polymerization of acrylonitrile-butadiene-carboxylic acid monomers: a kinetic study based on polymerization pressure profile // J. Dispers. Sci. Technol. 2020. V. 41. № 2. P. 157–167. https://doi.org/10.1080/01932691.2018.1496835
  6. 6. Chad E. Reese, Sanford A. Asher. Emulsifier-free emulsion polymerization produces highly charged, monodisperse particles for near infrared photonic crystals // J. Colloid Interface Sci. 2002. V. 248. № 1. P. 41–46. https://doi.org/10.1006/jcis.2001.8193
  7. 7. Прокопов Н.И., Грицкова И.А., Черкасов В.P., Чалых А.Е. Синтез монодисперсных функциональных полимерных микросфер для иммунологических исследований // Успехи химии, 1996. Т. 65. № 2. С. 178.
  8. 8. Oganesyan A. Free radical polymerization and phase formation in heterogeneous monomer/water systems // Doctoral (Chem.) Dissertation, Moscow, Inst. of Fine Chemical Technology, 1986. (in Russ)
  9. 9. Tauer K., Hernandez H., Kozempel S., Lazarev O., Nazaran P. Towards a consistent mechanism of emulsion polymerization – new experimental details // Colloid Polym. Sci. 2008. V. 286. P. 499–515. https://doi.org/10.1007/s00396-007-1797-3
  10. 10. Прокопов Н.И., Грицкова И.А., Кирютина О.П., Хаддаж М., Tауер K., Koземпел С. Изучение механизма безэмульгаторной полимеризации стирола // Высокомолек. Соед. Б. 2010 Т. 52. № 6. С. 1043–1049.
  11. 11. Goodall A.R., Wilkinson M.C., Hern J. Mechanism of emulsion polymerization of styrene in soap-free systems // J. Polym. Sci., Polym. Chem. 1977. V. 15. P. 2193–2218. https://doi.org/10.1002/pol.1977.170150912
  12. 12. Peter A. Lovell, F. Joseph Schork. Fundamentals of emulsion polymerization // Biomacromolecules. 2020. V. 21. № 11. P. 4396–4441. https://doi.org/10.1021/acs.biomac.0c00769
  13. 13. Ryu M., Kimber J.A., Sato T., Nakatani R., Hayakawaa T., Romano M., Pradere C., Hovhannisyan A.A., Kazarian S.G., Morikawa J. Infrared thermo-spectroscopic imaging of styrene radical polymerization in microfluidics // Chem. Eng. J. 2017. V. 324. № 15. P. 259–265. https://doi.org/10.1016/j.cej.2017.05.001
  14. 14. Kuzmin A.O., Parmon V.N., Pravdina M.Kh., Yavorskii A.I., Yavorskii N.I. Mass transfer in a medium with a rapidly renewed interface // Theor. Found. Chem. Eng. 2006. V. 40. P. 225–232. https://doi.org/10.1134/S0040579506030018
  15. 15. Hovhannisyan A. A., Grigoryan G.K, Khaddazh M., Grigoryan N.G. On the mechanism of latex particles formation in polymerization in heterogeneous monomer-water system // J. Chem. Chem. Eng. 2015. V. 9. P. 363–368. https://doi.org/10.17265/1934-7375/2015.05.009
  16. 16. Morawetz H. Macromolecules in solutions. M.: Mir. 1967. P. 398. (in Russ)
  17. 17. Oganesyan A.A., Grigoryan, G.K., Khaddazhb M., Gritskova I.A., Nadaryan A.G. Polymerization in the static heterogeneous system styrene-water in the presence of methanol // Theor. Found. Chem. Eng. 2013. V. 47. P. 600–603. https://doi.org/10.1134/S0040579513050230
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library