RAS Chemistry & Material ScienceКоллоидный журнал Colloid Journal

  • ISSN (Print) 0023-2912
  • ISSN (Online) 3034-543X

ELECTROPHORESIS OF CONDUCTING AND NON-CONDUCTING MICROPARTICLES IN A POLAR ELECTROLYTE UNDER A STRONG ELECTRIC FIELD

PII
S3034543X25040159-1
DOI
10.7868/S3034543X25040159
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 87 / Issue number 4
Pages
453-466
Abstract
This work focuses on the study of electrophoresis of conducting and non-conducting particles in a polar electrolyte solution under a strong electric field. Numerical modeling results are presented for both types of particles, including distributions of cation and anion concentrations, charge density, total ion concentration, and ion fluxes near the particle surface. It is shown that, for a dielectric surface with a sufficiently high surface charge, an extended space-charge region can form. The emergence of this region is driven by high surface conductivity in the electric double layer and by intense tangential ion fluxes. Qualitative differences in the mechanism of extended space charge formation are revealed when comparing ion-selective and dielectric particles. The findings enhance our understanding of nonlinear electrokinetic processes and can be useful in designing microfluidic systems and colloidal technologies.
Keywords
электрофорез дзета-потенциал плотность поверхностного заряда ионоселективная частица диэлектрическая частица сильное электрическое поле нелинейные эффекты двойной электрический слой
Date of publication
24.03.2025
Year of publication
2025
Number of purchasers
0
Views
30

References

  1. 1. Smoluchowski M. Contribution à la théorie de l’endos-mose électrique et de quelques phénomènes corrélatifs // Bulletin de l’Académie des Sciences de Cracovie. 1903.
  2. 2. Helmholtz H. Studien über elektrische grenzschichten // Annalen der Physik und Chemie. 1879. V. 243. № 7. P. 337–382. https://doi.org/10.1002/andp.18792430702
  3. 3. Wall S. The history of electrokinetic phenomena // Curr. Opin. Colloid Interface Sci. 2010. V. 15. P. 119–124. https://doi.org/10.1016/j.cocis.2009.12.005
  4. 4. Henry D.C. The cataphoresis of suspended particles. Part I. The equation of cataphoresis // Proc. R. Soc. Lond. A. 1931. V. 133. P. 106–129. https://doi.org/10.1098/rspa.1931.0133
  5. 5. Mooney M. Electrophoresis and the diffuse ionic layer // J. Phys. Chem. 1931. V. 35. № 1. P. 331–344. https://doi.org/10.1021/j150319a021
  6. 6. Dukhin S.S. Electrophoresis at large Peclet numbers // Adv. Colloid Interface Sci. 1991. V. 36. P. 219–248. https://doi.org/10.1016/0001-8686 (91)80034-h
  7. 7. Mishehuk N.A., Dukhin S.S. Electrokinetic phenomena of the second kind // Interfacial Electrokinetics and Electrophoresis. 2002. № 10. P. 241–275.
  8. 8. Mishehuk N.A., Dukhin S.S. Electrophoresis of solid particles at large Peclet numbers // Electrophoresis. 2002. V. 23. № 13. P. 2012. https://doi.org/10.1002/1522-2683 (200207)23:133.0.co;2-y
  9. 9. Barany S. Electrophoresis in strong electric fields // Adv. Colloid Interface Sci. 2009. V. 147–148. P. 36–43. https://doi.org/10.1016/j.cis.2008.10.006
  10. 10. Baran A.A., Babich Y.A., Tarovsky A.A., Mischuk N.A. Superfast electrophoresis of ion-exchanger particles // Colloids and Surfaces. 1992. V. 68. № 3. P. 141–151. https://doi.org/10.1016/0166-6622 (92)80198-b
  11. 11. Gamayunov N.I., Murtsovkin V.A., Dukhin A.S. Pair interaction of particles in electric field. 1. Features of hydrodynamic interaction of polarized particles // Colloid J. USSR (Engl. Transl.). 1986. V. 48. № 2. P. 197–203.
  12. 12. Murtsovkin V., Mantrov G. Steady flows in the neighborhood of a drop of mercury with the application of a variable external electric field // Colloid J. 1991. V. 53. P. 240–244.
  13. 13. Gamayunov N.I., Mantrov G.I., Murtsovkin V.A. Study of flows induced in the vicinity of conducting particles by an external electric field // Colloid J. USSR (Engl. Transl.). 1992. V. 54. P. 20–23.
  14. 14. Murtsovkin V.A. Nonlinear flows near polarized disperse particles // Colloid J. 1996. V. 58. P. 341–349.
  15. 15. Barinova N.O., Mishchuk N.A., Nesmeyanova T.A. Electroosmosis at spherical and cylindrical metal surfaces // Colloid J. 2008. V. 70. № 6. P. 695–702. https://doi.org/10.1134/s1061933x08060033
  16. 16. Baygents J.C., Baldessari F. Electrohydrodynamic instability in a thin fluid layer with an electrical conductivity gradient // Phys. Fluids. 1998. V. 10. № 1. P. 301–311. https://doi.org/10.1063/1.869567
  17. 17. Lin H., Storey B.D., Oddy M.H., Chen C.-H., Santiago J.G. Instability of electrokinetic microchannel flows with conductivity gradients // Phys. Fluids. 2004. V. 16. № 6. P. 1922–1935. https://doi.org/10.1063/1.1710898
  18. 18. Chen C.-H., Lin H., Lele S., Santiago J. Convective and absolute electrokinetic instability with conductivity gradients // J. Fluid Mech. 2005. V. 524. P. 263–303. https://doi.org/10.1017/s0022112004002381
  19. 19. Frants E., Amiroudine S., Demekhin E. DNS of nonlinear electrophoresis // Microgravity Sci. Technol. 2024. V. 36. P. 21. https://doi.org/10.1007/s12217-024-10108-w
  20. 20. Squires T., Bazant M.Z. Induced-charge electro-osmosis // J. Fluid Mech. 2004. V. 509. P. 217–252. https://doi.org/10.1017/S0022112004009309
  21. 21. Rubinstein I., Zaltzman B. Electro-osmotically induced convection at a permselective membrane // Physical Review E. 2000. V. 62. № 2. P. 2238–2251. https://doi.org/10.1103/PhysRevE.62.2238
  22. 22. Frants E.A., Ganchenko G.S., Shelistov V.S., Amiroudine S., Demekhin E.A. Nonequilibrium electrophoresis of an ion-selective microgranule for weak and moderate external electric fields // Phys. Fluids. 2018. V. 30. № 2. P. 022001. https://doi.org/10.1063/1.5010084
  23. 23. Ganchenko G.S., Frants E.A., Shelistov V.S., Nikitin N.V., Amiroudine S., Demekhin E.A. Extreme non-equilibrium electrophoresis of an ion-selective microgranule // Phys. Rev. Fluids. 2019. V. 4. P. 043703. https://doi.org/10.1103/PhysRevFluids.4.043703
  24. 24. Mishchuk N.A., Barinova N.O. Theoretical and experimental study of nonlinear electrophoresis // Colloid J. 2011. V. 73. № 1. P. 88–96. https://doi.org/10.1134/S1061933X11010133
  25. 25. Ganchenko G.S., Frants E.A., Amiroudine S., Demekhin E.A. Instabilities, bifurcations, and transition to chaos in electrophoresis of charge-selective microparticle // Phys. Fluids. 2020. V. 32. № 5. P. 054103. https://doi.org/10.1063/1.5143312
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library