RAS Chemistry & Material ScienceКоллоидный журнал Colloid Journal

  • ISSN (Print) 0023-2912
  • ISSN (Online) 3034-543X

Influence of iron cations on the hydrolysis of tetraethoxysilane and process of gel formation

PII
10.31857/S0023291224060135-1
DOI
10.31857/S0023291224060135
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 86 / Issue number 6
Pages
817-823
Abstract
The influence of small additions of Fe3+ ions on the processes of hydrolysis of tetraethoxysilane and subsequent polycondensation of products was studied using viscosimetry and dynamic light scattering methods. Experiments were carried out at 50оC, hydrolysis pH was 1.5; 2.5; 5.0 or 7.0, the amount of doping cation varied from 1.5 to 3.8 at. %. In the absence of a doping cation, the gelation time grows with increasing pH from 1.5 to 5.0, and at pH 7.0, polycondensation occurs without gelation. At pH 1.5, the introduction of a dopant increases the gelation time, at pH 2.5 and 5.0 it decreases. With increasing dopant content, the gelation time increases at all three pH values. The size of the particles formed during the polycondensation process depends on the pH and the amount of dopant. The smallest particles with a median diameter of about 10 nm are formed at pH 2.5. It has been suggested that the cause of all the observed effects is the incorporation of iron cations into the siloxane matrix. The degree of incorporation depends on the degree of hydrolysis of iron cations. This assumption is confirmed by the values of the electrokinetic potential of the systems under study and the dynamics of changes in the zeta potential with varying pH and dopant content.
Keywords
тетраэтоксисилан гидролиз поликонденсация ионы железа время гелеобразования размеры частиц встраивание железа в кремнийкислородный каркас
Date of publication
15.11.2024
Year of publication
2024
Number of purchasers
0
Views
28

References

  1. 1. Brinker C.J., Scherer G.W. Sol-Gel science: the physics and chemistry of Sol-Gel processing. San Diego: Academic Press. 1990.
  2. 2. Lok P.S., Sriman K.B., Rahul K., Geetika M., Usha S., Garima S., Saurabh A. Sol-Gel processing of silica nanoparticles and their applications // Adv. Colloid Interface Sci. 2014. V. 214. P. 17–37. https://doi.org/10.1016/j.cis.2014.10.007
  3. 3. Iller R.K. Chemistry of silica gel. New Jersey: John Wiley& Sons, Hoboken. 1978.
  4. 4. Bansal N. Influence of several metal ions on the gelation activation energy of silicon tetraethoxide // J. Am. Ceram. Soc. 1990. V. 73. № 9. P. 2647–2652. https://doi.org/10.1111/j.1151-2916.1990.tb06741.x
  5. 5. Атанасова В.Д., Швец В.А., Казанский В.Б. Исследование методами ЭПР и оптической спектроскопии ионов переходных металлов в цеолитах и их комплексообразования с адсорбированными молекулами // Успехи химии. 1981. Т. 50. № 3. С. 385–405. https://doi.org/10.1070/RC1981v050n03ABEH002553
  6. 6. García-Aguilar J., Miguel-García I., Juan-Juan J., Such-Basáñez I., San Fabián E., Cazorla-Amorós D., Berenguer-Murcia Á. One step-synthesis of highly dispersed iron species into silica for propylene epoxidation with dioxygen // J. Catal. 2016. V. 338. P. 154–167. https://doi.org/10.1016/j.jcat.2016.03.004
  7. 7. Tanjindaprateep S.P., Kidkhunthod P., Pattanasattayavong P., Ogawa M. Incorporation of iron (III) into nanoporous silica spheres // Colloids Surf. A Physicochem. Eng. Asp. 2024. V. 686. P. 133305. https://doi.org/10.1016/j.colsurfa.2024.133305
  8. 8. López T., Méndez J., Zamudio T., Villa M. Spectroscopic study of sol-gel silica doped with iron ions // Mater. Chem. Phys. 1992. V. 30. № 3. P. 161–167. https://doi.org/10.1016/0254-0584 (92)90218-W
  9. 9. Downs E., Ao S., Siegel R., Schadler L. Transition metal doping of amorphous silica particles // J. Nanopart. Res. 2017. V. 19. № 337. P. 1–14. https://doi.org/10.1007/s11051-017-4005-5
  10. 10. Shilova O.A. Synthesis and structure features of composite silicate and hybrid TEOS-derived thin films doped by inorganic and organic additives // J. Solgel Sci. Technol. 2013. V. 68. P. 387–410. https://doi.org/10.1007/s10971-013-3026-5
  11. 11. Shilova O.A., Gubanova N.N., Matveev V.A. et al. Processes of film-formation and crystallization in catalytically active ‘spin-on glass’ silica films containing Pt and Pd nanoparticles // J. Mol. Liq. 2019. V. 288. P. 110996. https://doi.org/10.1016/j.molliq.2019.110996
  12. 12. Тарасенко Е.А., Лебедева О.Е., Петерс Г.С., Велигжанин А.А. Влияние катионов металлов на кинетику образования и структуру гелей, формирующихся при кислотном гидролизе тетраэтоксисилана // Журн. физ. химии. 2019. T. 93. № 3. C. 1357–1361. https://doi.org/10.1134/S0044453719090280
  13. 13. Gonçalves M.C. Sol-Gel silica nanoparticles in medicine: a natural choice. Design, synthesis and products // Molecules. 2018. V 23. № 8. P. 22–26. https://doi.org/10.3390/molecules23082021
  14. 14. Naruphontjirakul P. Cations doped nonporous silica nanoparticles // 12th Biomedical Engineering International Conference. 2019. P. 1–4. https://doi.org/10.1109/BMEiCON47515.2019.8990288
  15. 15. Pohaku Mitchell K.K., Liberman A., Kummel A.C., Trogler W.C. Iron (III)-Doped, Silica Nanoshells: A biodegradable form of silica // J. Am. Chem. Soc. 2012. V. 134. № 34. P. 13997–14003. https://doi.org/10.1021/ja3036114
  16. 16. Shilova O.A., Khamova T.V., Panova G.G., Udalova O.R., Artemyeva A.M., Kornyukhin D.L., Kopitsa G.P. Sol-Gel-derived functional coatings for pre-sowing seed treatment // Coatings. 2023. V. 13. № 12. P. 1978. https://doi.org/10.3390/coatings13121978
  17. 17. Kessler V.G., Seisenbaeva G.A. Molecular mechanisms of the metal oxide sol-gel process and their application in approaches to thermodynamically challenging complex oxide materials // J. Solgel Sci. Technol. 2023. V. 107. P. 190–200. https://doi.org/10.1007/s10971-023-06120-y
  18. 18. Vrieling E.G., Sun Q., Beelen T.P., Hazelaar S., Gieskes W.W., Van Santen R.A., Sommerdijk N.A. Controlled silica synthesis inspired by diatom silicon biomineralization // J. Nanosci. Nanotechnol. 2005. V. 5. №. 1. P. 68–78. https://doi.org/10.1166/jnn.2005.010
  19. 19. Darmawan A., Smart S., Julbe A., Diniz da C. J. C. Iron oxide silica derived from Sol-Gel Synthesis // Materials. 2011. V. 4. №. 2. P. 448–456. https://doi.org/10.3390/ma4020448
  20. 20. Takeno N. Atlas of Eh – pH diagrams. Intercomparison of thermodynamic databases. National Institute of Advanced Industrial Science and Technology. 2005.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library