RAS Chemistry & Material ScienceКоллоидный журнал Colloid Journal

  • ISSN (Print) 0023-2912
  • ISSN (Online) 3034-543X

Colloidal system based on Pd(Acac)2–chiral stabilizer-H2 in the enantioselective hydrogenation of N-acetyl-α-amidocinminamic acid

PII
10.31857/S0023291224040079-1
DOI
10.31857/S0023291224040079
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 86 / Issue number 4
Pages
482-495
Abstract
It has been shown that the colloidal system Pd(Acac)2–mod–H2, where mod are chiral stabilizers of molecular (8S,9R)-cinhonidine, (-)-Сin, and ionic type (-)-Cin*HCl and (-)- Cin*2HCl, exhibits catalytic activity in the asymmetric hydrogenation of N-acetyl-α-amidocinnamic acid (AACA) at room temperature and a H2 pressure of 5 atm. In the presence of protonated forms of cinchonidine, the esterification reaction of the product N-acetylphenylalanine (N-APha) was observed. The excess of the R-(-)-enantiomer of N-acetylphenylalanine reaches 78% on the Pd(Acac)2–(-)-Сin–H2 system at the ratio (-)-Сin/Pd = 1.5, while the protonated forms of the quinine alkaloid as modifiers of catalytic systems show less efficiency with respect to chiral induction. Using XRD and HR-TEM, the formation of palladium nanoparticles with average size 5.3 ± 0.8 nm and 4.2 ± 0.5 nm, respectively, was established for the systems Pd(Acac)2–(-)-Cin–H2 and Pd(Acac)2–(-) -Сin *HCl–H2.
Keywords
наночастицы Pd хиральный стабилизатор энантиоселективное гидрирование прохиральные кислоты
Date of publication
15.07.2024
Year of publication
2024
Number of purchasers
0
Views
33

References

  1. 1. Jansat S., Picurelli D., Pelzer K., Philippot K., Gómez M., Muller G., Lecante P., Chaudret B. Synthesis, characterization and catalytic reactivity of ruthenium nanoparticles stabilized by chiral N-donor ligands// New J. Chem. 2006. V. 30. № 1. P. 115–122. https://doi.org/10.1039/B509378C
  2. 2. Blaser H.U., Federsel H.-J. Asymmetric catalysis on industrial scale: Challenges, approaches and solutions. Weinheim: Wiley-VCH, 2011.
  3. 3. Blaser H.U., Pugin B., Spindler F. Progress in enantioselective catalysis assessed from an industrial point of view // J. Mol. Catal. A: Chem. 2005. V. 231. № 1–2. P. 1–20. https://doi.org/10.1016/j.molcata.2004.11.025
  4. 4. Tang W., Zhang X. New chiral phosphorus ligands for enantioselective hydrogenation // Chem. Rev. 2003. V. 103. № 8. P. 3029–3070. https://doi.org/10.1021/cr020049i
  5. 5. Tao F. Metal Nanoparticles for Catalysis: Advances and Applications. RSC Catalysis Series // Royal Society of Chemistry Book. 2014. V. 17. P. 1–156. https://doi.org/10.1039/9781782621034
  6. 6. Barbaro P., Santo V.D., Liguori F. Emerging strategies in sustainable fine-chemical synthesis: Asymmetric catalysis by metal nanoparticles // Dalton Trans. 2010. V. 39. № 36. P. 8391–8402. https://doi.org/10.1039/C002051F
  7. 7. Yasukawa T., Suzuki A., Miyamura H., Nishino K., Kobayashi S. Chiral metal nanoparticle systems as heterogeneous catalysts beyond homogeneous metal complex catalysts for asymmetric addition of arylboronic acids to α,β-unsaturated carbonyl compounds // J. Am. Chem. Soc. 2015. V. 137. № 20. P. 6616–6623. https://doi.org/10.1021/jacs.5b02213
  8. 8. Grabulosa A., Lavedan P., Pradel Ch., Muller G., Gómez M., Raluy E. P-stereogenic phosphines for the stabilisation of metal nanoparticles. A surface state study // Catalysts. 2016. V. 6. № 12. P. 213. https://doi.org/10.3390/catal6120213
  9. 9. Smith G.V., Cheng J., Song R. Enantioselective hydrogenation of prochiral C=C bonds over nobel metal catalysts supported by β-cyclodextrin polymer. Catalysis of organic reactions. New York-Basel-Hong Kong: Marcel Dekker, 1996.
  10. 10. Hall T.J., Johnston P., Vermeer W.A.H., Watson S.R., Wells P.B. Enantioselective hydrogenation catalysed by palladium // Stud. Surf. Sci. Catal. 1996. V. 101. P. 221–230. https://doi.org/10.1016/S0167-2991 (96)80232-1
  11. 11. Li M., He W., Zhang S-Y. The use of cinchona alkaloid derivatives as chiral ligands and organocatalysts in asymmetric catalysis // Mini-Rev. Org. Chem. 2022. V. 19. № 2. P. 146–165. http://dx.doi.org/10.2174/1570193X18666210428133120
  12. 12. Perez J.R.G., Malthete J., Jacques J. Hydrogenation asymetrique d’acides cinnamiques prochiraux en presence de Pd sur charbon et de bases chirales // Compt. Rend. 1985. V. 300. № 5. P. 169–172.
  13. 13. Szӧllősi G., Niwa S.I., Hanaoka T.A., Mizukami F. Enantioselective hydrogenation of α,β-unsaturated carboxylic acids over cinchonidine-modified Pd catalysts: Effect of substrate structure on the adsorption mode // J. Mol. Cat. A. Chem. 2005. V. 230. № 1–2. P. 91–95. https://doi.org/10.1016/j.molcata.2004.12.019
  14. 14. Szӧllősi G., Szabó E., Bartók M. Enantioselective hydrogenation of N-acetyldehydroamino acids over supported palladium catalysts // Adv. Synth. Catal. 2007. V. 349. № 3. P. 405–410. https://doi.org/10.1002/adsc.200600304
  15. 15. Borszeky K., Mallat T., Baiker A. Enantioselective hydrogenation of 2-methyl-2-pentenoic acid over cinchonidine-modified Pd/alumina // Catal. Lett. 1996. V. 41. P. 199–202. https://doi.org/10.1007/BF00811491
  16. 16. Borszeky K., Mallat T., Baiker A. Enantioselective hydrogenation of α,β-unsaturated acid. Substrate-modifier interaction over cinchonidine modified Pd/Al2O3 // Tetrahedron: Asymmetry. 1997. V. 8. № 22. P. 3745–3753. https://doi.org/10.1016/S0957-4166 (97)00526-0
  17. 17. Borszeky K., Mallat T., Baiker A. Palladium-catalysed enantioselective hydrogenation of alkenoic acids. Role of isomerization // Catal. Lett. 1999. V. 59. P. 95–97. https://doi.org/10.1023/A:1019049311321
  18. 18. Deng G.-J., Fan Q.-H., Chen X.-M., Liu D.-S., Chan A.S.C. A novel system consisting of easily recyclable dendritic Ru-BINAP catalyst for asymmetric hydrogenation // Chem. Commun. 2002. № 15. P. 1570–1571. https://doi.org/10.1039/B203117E
  19. 19. Chan A.S.C., Pluth J.F., Halpern J. Identification of the enantioselective step in the asymmetric catalytic hydrogenation of a prochiral olefins // J. Amer. Chem. Soc. 1980. V. 102. № 18. P. 5952–5954. https://doi.org/10.1021/ja00538a064
  20. 20. Broadley K.J. The vascular effects of trace amines and amphetamines // Pharmacology & Therapeutics. 2010. V. 125. № 3. P. 363–375. https://doi.org/10.1016/j.pharmthera.2009.11.005
  21. 21. Segawa M. Hereditary progressive dystonia with marked diurnal fluctuation // Brain Dev. 2000. № 22. P.65–80. https://doi.org/10.1016/s0387-7604 (00)00148-0
  22. 22. Ниндакова Л.О., Страхов В.О., Колесников С.С. Гидрирование кетонов на диспергированных хирально-модифицированных наночастицах палладия // Журнал общей химии. 2018. Т. 88. № 2. С. 219–227.
  23. 23. Гордон А., Форд Р. Спутник Химика. Перевод с англ. Розенберг Е.Л., Коппель С.И. Москва: Мир, 1976. С. 437–465.
  24. 24. Bonnemann H., Braun G., Brijoux W., Brinkmann R., Schulze T.A., Seevogel K., Siepen K. Nanoscale colloidal metals and alloys stabilized by solvents and surfactants. Preparation and use as catalyst precursors // J. Organomet. Chem. 1996. V. 520. № 1–2. P. 143–162. https://doi.org/10.1016/0022-328X (96)06273-0
  25. 25. Hagen C. M., Widegren J.A., Maitlis P.M., Finke R.G. Is it homogeneous or heterogeneous catalysis? Compelling evidence for both types of catalysts derived from [rh(η5-c5me5)cl2]2 as a function of temperature and hydrogen pressure // J. Am. Chem. Soc. 2005. V. 127. № 12. P. 4423–4432. https://doi.org/10.1021/ja044154g
  26. 26. Poltorak O.M., Boronin V.S. A new method of studying active centres in crystalline catalysts // Russ. J. Phys. Chem. 1966. V. 40. P. 1436–1445.
  27. 27. Van Hardeveld R., Hartog F. The statistics of surface atoms and surface sites on metal crystals // Surface Science. 1969. V. 15. № 2. P. 189–230. https://doi.org/10.1016/0039-6028 (69)90148-4
  28. 28. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S., Windus T.L., Dupuis M., Montgomery J.A. General atomic and molecular electronic structure system // J. Comput. Chem. 1993. V. 14. № 11. P.1347–1363. https://doi.org/10.1002/jcc.540141112
  29. 29. Tungler A., Sipos E., Hada V. Heterogeneous catalytic asymmetric hydrogenation of the C=C bond // Current Organic Chemistry. 2006. V. 10. № 13. P. 1569–1583. https://doi.org/10.2174/138527206778249595
  30. 30. Свирский К.С., Кунакова Р.В., Зайнуллин Р.А., Докичев В.А. Катализируемая PdCl2 этерификация карбоновых кислот и переэтерификация сложных эфиров // Башкирский химический журнал. 2010. Т. 17. № 2. С. 162–164.
  31. 31. Cho C., Kim D., Choi H., Kim T., Shim S. Catalytic activity of tin(II) chloride in esterification of carboxylic acids with alcohols // Bull. Korean Chem. Soc. 2002. V. 23. № 4. P. 539–540. https://doi.org/10.1002/chin.200244079
  32. 32. Mineno T., Kansuii H. High yielding methyl esterification catalyzed by indium (III) chloride // Chem. Pharm. Bull. 2006. V. 54. № 6. P. 918–919. https://doi.org/10.1248/cpb.54.918
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library