RAS Chemistry & Material ScienceКоллоидный журнал Colloid Journal

  • ISSN (Print) 0023-2912
  • ISSN (Online) 3034-543X

Оценка толщины фронта плавления льда, основанная на исследовании кинетики таяния ледяных шаров в воздухе

PII
10.31857/S0023291224030089-1
DOI
10.31857/S0023291224030089
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 86 / Issue number 3
Pages
397-404
Abstract
Коллоидный журнал, Оценка толщины фронта плавления льда, основанная на исследовании кинетики таяния ледяных шаров в воздухе
Keywords
Date of publication
15.05.2024
Year of publication
2024
Number of purchasers
0
Views
25

References

  1. 1. Маэно Н. Наука о льде. Мир, 1988. 231 c.
  2. 2. Уббелоде А. Плавление и кристаллическая структура. Мир, 1969. 420 c.
  3. 3. Mazur P. Principals of Cryobiology in “Life in the Frozen State” Eds. Fuller B.J., Lane N., Benson E.E. CRC Press, Boca Raton, 2004. https://doi.org/10.1201/9780203647073
  4. 4. Тихонов A.H., Самарский А.А. Уравнения математической физики. Изд-во: МГУ, 1999.
  5. 5. Bartels-Rausch Т. Ten things we need to know about ice and snow // Nature. 2013. V. 494. № 7435. P. 27–29. https://doi.org/10.1038/494027a
  6. 6. Dash J.G., Rempel A.W., Wettlaufer J.S. The physics of premelted ice and its geophysical consequences // Rev. Mod. Phys. 2006. V. 78. № 3. P. 695–741. https://doi.org/10.1103/RevModPhys.78.695
  7. 7. Fitzner М., Sosso G.C., Cox S.J., Michaelides A. Ice is born in low-mobility regions of supercooled liquid water // PNAS. 2019. V. 116. № 6. P. 2009–2014. https://doi.org/10.1073/pnas.181713511
  8. 8. Wei X., Xiao S., Ni J. Studies of ice melting using molecular dynamics // Molecular Simulation. 2010. V. 36. № 11. P. 823–830. https://doi.org/10.1080/08927021003774287
  9. 9. Mukherjee S., Bagchi B. Entropic origin of the attenuated width of the ice-water interface // J. Phys. Chem. C. 2020. V. 124. № 13. 7334–7340. https://doi.org/10.1021/acs.jpcc.0c02030
  10. 10. Mizuno Y., Hanafusa N. Studies of surface properties of ice using nuclear magnetic resonance // J. Phys. Colloque. 1987. V. 48. № C1 P. 511–517. https://doi.org/10.1051/jphyscol:1987170
  11. 11. Kvlividze V.I., Kiselev V.F., Kurzaev A.B., Ushakova L.A. The mobile water phase on ice surfaces // Surface science. 1974. V. 44. № 1. P. 60–68. https://doi.org/10.1016/0039-6028 (74)90093-4
  12. 12. Asay D.B., Kim S.H. Evolution of the adsorbed water layer structure on silicon oxide at room temperature // J. Phys. Chem. B. 2005. V. 109. № 35. P. 16760–16763. https://doi.org/10.1021/jp053042o
  13. 13. Залуцкий А.А. Зондовая меccбауэровcкая диагностика свойств квазижидкого слоя воды на алюмосиликатной поверхности природного происхождения // Кристаллография. 2020. Т. 65. № 3. С. 384–389. https://doi.org/10.31857/S0023476120030376
  14. 14. Ниапg С., Wikfeldt К.Т., Tokushima Т., et. al. The inhomogeneous structure of water at ambient conditions // PNAS. 2009. V. 106. № 36. P. 15214–15218. https://doi.org/10.1073/pnas.0904743106
  15. 15. Murata K., Asakawa H., Nagashima K., Furukawa Y., Sazaki G. Thermodynamic origin of surface melting on ice crystals // PNAS. 2016. V. 113. № 44. P. E6741–E6748. https://doi.org/10.1073/pnas.1608888113
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library