- PII
- 10.31857/S0023291224010128-1
- DOI
- 10.31857/S0023291224010128
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 86 / Issue number 1
- Pages
- 130-140
- Abstract
- Коллоидный журнал, Получение композита наноалмаз-лизоцим-мирамистин и перспективы его использования в протезах сердечного клапана
- Keywords
- Date of publication
- 15.01.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 25
References
- 1. Bloomfield P. Choice of heart valve prosthesis // Heart. 2002. V. 87. № 6. P. 583–589. https://doi.org/10.1136/heart.87.6.583
- 2. Shao Z., Tao T., Xu H. et al. Recent progress in biomaterials for heart valve replacement: Structure, function, and biomimetic design // View. 2021. V. 2. № 6. P. 20200142. https://doi.org/10.1002/VIW.20200142
- 3. Ekser B., Cooper D.K.C., Tector A.J. The need for xenotransplantation as a source of organs and cells for clinical transplantation // International Journal of Surgery. 2015. V. 23. P. 199–204. https://doi.org/10.1016/j.ijsu.2015.06.066
- 4. Findeisen K., Morticelli L., Goecke T. et al. Toward acellular xenogeneic heart valve prostheses: Histological and biomechanical characterization of decellularized and enzymatically deglycosylated porcine pulmonary heart valve matrices // Xenotransplantation. 2020. V. 27. № 5. P. e12617. https://doi.org/10.1111/xen.12617
- 5. Zilla P., Brink J., Human P. et al. Prosthetic heart valves: Catering for the few // Biomaterials. 2008. V. 29. № 4. P. 385–406. https://doi.org/10.1016/j.biomaterials.2007.09.033
- 6. Чернышева М.Г., Бадун Г.А., Синолиц А.В. и др. Биоматериал для изготовления протезов клапанов сердца и способ получения биоматериала. Патент РФ RU2711544. РФ, 2020.
- 7. Tsai L.W., Lin Y.C., Perevedentseva E. et al. Nanodiamonds for medical applications: Interaction with blood in vitro and in vivo // International Journal of Molecular Sciences. 2016. V. 17. № 7. P. 5–9. https://doi.org/10.3390/ijms17071111
- 8. Mona J., Kuo C.-J., Perevedentseva E. et al. Adsorption of human blood plasma on nanodiamond and its influence on activated partial thromboplastin time // Diamond and Related Materials. 2013. V. 39. P. 73–77. https://doi.org/10.1016/j.diamond.2013.08.001
- 9. Turcheniuk V., Raks V., Issa R. et al. Antimicrobial activity of menthol modified nanodiamond particles // Diamond and Related Materials. 2015. V. 57. P. 2–8. https://doi.org/10.1016/j.diamond.2014.12.002
- 10. Xiao J., Duan X., Yin Q. et al. Nanodiamonds-mediated doxorubicin nuclear delivery to inhibit lung metastasis of breast cancer // Biomaterials. 2013. V. 34. № 37. P. 9648–9656. https://doi.org/10.1016/j.biomaterials.2013.08.056
- 11. Huang H., Pierstorff E., Osawa E. et al. Protein-mediated assembly of nanodiamond hydrogels into a biocompatible and biofunctional multilayer nanofilm // ACS Nano. 2008. V. 2. № 2. P. 203–212. https://doi.org/10.1021/nn7000867
- 12. Schrand A.M., Hens S.A., Shenderova O.A. Nanodiamond particles: Properties and perspectives for bioapplications // Critical Reviews in Solid State and Materials Sciences. 2009. V. 34. № 1–2. P. 18–74. https://doi.org/10.1080/10408430902831987
- 13. Tinwala H., Wairkar S. Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics // Materials Science and Engineering: C. 2019. V. 97. P. 913–931. https://doi.org/10.1016/j.msec.2018.12.073
- 14. Vaijayanthimala V., Lee D.K., Kim S.V. et al. Nanodiamond-mediated drug delivery and imaging: challenges and opportunities // Expert Opinion on Drug Delivery. 2015. V. 12. № 5. P. 735–749. https://doi.org/10.1517/17425247.2015.992412
- 15. Chen M., Pierstorff E.D., Lam R. et al. Nanodiamond-mediated delivery of water-insoluble therapeutics // ACS Nano. 2016. V. 3. № 7. P. 2016–2022. https://doi.org/10.1021/nn900480m
- 16. Perevedentseva E., Lin Y.-C., Cheng C.-L. A review of recent advances in nanodiamond-mediated drug delivery in cancer // Expert Opinion on Drug Delivery. 2021. V. 18. № 3. P. 369–382. https://doi.org/10.1080/17425247.2021.1832988
- 17. Chatterjee A., Perevedentseva E., Jani M. et al. Antibacterial effect of ultrafine nanodiamond against Gram-negative bacteria Escherichia coli // Journal of Biomedical Optics. 2014. V. 20. № 5. P. 051014. https://doi.org/10.1117/1.jbo.20.5.051014
- 18. Мосолова А.В., Климова Л.Г., Суковатых Б.С. и др. Оценка биоцидной активности нового шовного материала, импрегнированного мирамистином // Вестник ВолГМУ. 2021. V. 18. № 1. P. 31–35. https://doi.org/10.19163/1994-9480-2021-1 (77)-31-35
- 19. Дунаевский А.М., Кириченко И.М. Клиническое обоснование использования препарата Мирамистин в терапии инфекционно-воспалительных заболеваний респираторной системы. Обзор литературы // Поликлиника. 2013. P. 6–12.
- 20. Chernysheva M.G., Melik-Nubarov N.S., Grozdova I.D. et al. Reduction of cytotoxicity of Myramistin by adsorption on nanodiamonds // Mendeleev Communications. 2017. V. 27. № 4. P. 421–423. https://doi.org/10.1016/j.mencom.2017.07.036
- 21. Chernysheva M.G., Shnitko A.V., Skrabkova H.S. et al. Peculiarities of alkylamidopropyldimethylbenzylammonium (Miramistin) in the relationship to lysozyme in comparison with quaternary ammonium surfactants: Coadsorption at the interfaces, enzymatic activity and molecular docking // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. V. 629. P. 127503. https://doi.org/10.1016/j.colsurfa.2021.127503
- 22. Chaschin I.S., Badun G.A., Chernysheva M.G. et al. Structural and mechanical characteristics of collagen tissue coated with chitosan in a liquid CO2/water system at different pressures // Journal of the Mechanical Behavior of Biomedical Materials. 2019. V. 94. P. 213–221. https://doi.org/10.1016/j.jmbbm.2019.03.012
- 23. Badun G.A., Chernysheva M.G., Yakovlev R.Y. et al. A novel approach radiolabeling detonation nanodiamonds through the tritium thermal activation method // Radiochimica Acta. 2014. V. 102. № 10. P. 941–946. https://doi.org/10.1515/ract-2013-2155
- 24. Бадун Г.А., Чернышева М.Г. Метод термической активации трития. Особенности применения, современные достижения и дальнейшие перспективы развития // Радиохимия. 2023. V. 65. № 2. P. 158–171. https://doi.org/10.31857/S0033831123020053
- 25. Стерилизация медицинских изделий. МИКРОБИОЛОГИЧЕСКИЕ МЕТОДЫ. Часть 1. Оценка популяции микроорганизмов на продукции // ГОСТ Р ИСО 11737–1–2000, 2014.
- 26. Чернышева М.Г., Бадун Г.А., Синолиц А.В. et al. Метод тритиевого зонда в исследовании адсорбционных слоев лизоцима на поверхности детонационных наноалмазов // Радиохимия. 2021. V. 63. № 2. P. 185–192. https://doi.org/10.31857/S0033831121020118
- 27. Petit T., Puskar L. FTIR spectroscopy of nanodiamonds: Methods and interpretation // Diamond and Related Materials. 2018. V. 89. P. 52–66. https://doi.org/10.1016/j.diamond.2018.08.005
- 28. Aramesh M., Shimoni O., Ostrikov K. et al. Surface charge effects in protein adsorption on nanodiamonds // Nanoscale. 2015. V. 7. № 13. P. 5726–5736. https://doi.org/10.1039/C5NR00250H
- 29. Perevedentseva E., Cheng C.-Y., Chung P.-H. et al. The interaction of the protein lysozyme with bacteria E. coli observed using nanodiamond labelling // Nanotechnology. 2007. V. 18. № 31. P. 315102. https://doi.org/10.1088/0957-4484/18/31/315102
- 30. Liu Y.L., Sun K.W. Protein functionalized nanodiamond arrays // Nanoscale Research Letters. 2010. V. 5. № 6. P. 1045–1050. https://doi.org/10.1007/s11671-010-9600-7
- 31. Perevedentseva E., Cai P.-J., Chiu Y.-C. et al. Characterizing protein activities on the lysozyme and nanodiamond complex prepared for bio applications // Langmuir. 2011. V. 27. № 3. P. 1085–1091. https://doi.org/10.1021/la103155c
- 32. Levashov P.A., Sedov S.A., Shlpovskov S. et al. Quantitative turbidimetric assay of enzymatic Gram-negative bacteria lysis // Analytical Chemistry. 2010. V. 82. № 5. P. 2161–2163. https://doi.org/10.1021/ac902978u
- 33. Матолыгина Д.А., Душутина Н.С., Овчинникова Е.Д. и др. Единый подход для расчета скорости ферментативного лизиса живых бактериальных клеточных субстратов турбидиметрическим методом // Вестн. Моск. Ун-та. 2018. V. 59. № 2. P. 125–131.
- 34. Lu W.-J., Smirnov S.A., Levashov P.A. General characteristics of the influence of surfactants on the bacteriolytic activity of lysozyme based on the example of enzymatic lysis of Lactobacillus plantarum cells in the presence of Tween 21 and SDS // Biochemical and Biophysical Research Communications. 2021. V. 575. P. 73–77. https://doi.org/10.1016/j.bbrc.2021.08.060
- 35. Chernysheva M.G., Chaschin I.S., Badun G.A. et al. Novel nanodiamond coatings for durable xenogenic heart valve prostheses: Mechanical properties and in vivo stability // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2023. V. 656. P. 130373. https://doi.org/10.1016/j.colsurfa.2022.130373
- 36. Badun G.A., Chernysheva M.G., Gus’kov A.V. et al. Adsorption of alkyltrimethylammonium bromides on nanodiamonds // Fullerenes, Nanotubes and Carbon Nanostructures. 2020. V. 28. № 5. P. 361–367. https://doi.org/10.1080/1536383X.2019.1685982