RAS Chemistry & Material ScienceКоллоидный журнал Colloid Journal

  • ISSN (Print) 0023-2912
  • ISSN (Online) 3034-543X

STABILIZATION OF PICKERING EMULSIONS WITH HETEROAGGREGATES OF DETONATION NANODIAMONDS AND SIO2 NANOPARTICLES

PII
10.31857/S0023291223600347-1
DOI
10.31857/S0023291223600347
Publication type
Status
Published
Authors
Volume/ Edition
Volume 85 / Issue number 4
Pages
453-462
Abstract
The stabilization of Pickering emulsions with mixtures of similarly and oppositely charged detonation nanodiamonds and silica nanoparticles has been studied. Dynamic light scattering has been employed to study the influence of pH and the mass ratio of the particles on the sizes and ζ-potentials of aggregates. The formation of heteroaggregates from mixtures of similarly charged nanoparticles and the efficient stabilization of dodecane droplets have been shown and theoretically substantiated. Submicron droplets of Pickering emulsion stabilized with the mixtures of oppositely charged silica nanoparticles and detonation nanodiamonds have been obtained.
Keywords
Date of publication
01.07.2023
Year of publication
2023
Number of purchasers
0
Views
29

References

  1. 1. Ramsden W. Separation of solids in the surface-layers of solutions and “suspensions” // Proc. R. Soc. London. 1903. V. 72. P. 156–164. https://doi.org/10.1098/rspl.1903.0034
  2. 2. Pickering S.U. CXCVI.—Emulsions // J. Chem. Soc. Trans. 1907. V. 91. P. 2001–2021. https://doi.org/10.1039/CT9079102001
  3. 3. Berton-Carabin C.C., Schroen K. Pickering emulsions for food applications: Background, trends, and challenges // Annu. Rev. Food Sci. Technol. 2015. V. 6. P. 263–297. https://doi.org/10.1146/annurev-food-081114-110822
  4. 4. Guzman E., Ortega F., Rubio R.G. Pickering emulsions: A novel tool for cosmetic formu-lators // Cosmetics. 2022. V. 9. № 4. P. 68. https://doi.org/10.3390/cosmetics9040068
  5. 5. Marto J., Ascenso A., Simoes S., Almeida A.J., Ribeiro H.M. Pickering emulsions: Challenges and opportunities in topical delivery // Expert Opin. Drug Deliv. 2016. V. 13. № 8. P. 1093-1107. https://doi.org/10.1080/17425247.2016.1182489
  6. 6. Albert C., Beladjine M., Tsapis N., Fattal E., Agnely F., Huang N. Pickering emulsions: Preparation processes, key parameters governing their properties and potential for pharmaceutical applications // J. Control. Release 2019. V. 309. P. 302–332. https://doi.org/10.1016/j.jconrel.2019.07.003
  7. 7. Rodriguez A.M.B., Binks B.P. Capsules from Pickering emulsion templates // Curr. Opin. Colloid Interface Sci. 2019. V. 44. P. 107–129. https://doi.org/10.1016/j.cocis.2019.09.006
  8. 8. Вуль А.Я., Шендерова О.А. Детонационные наноалмазы. Технология, структура, свойства и применения. СПб: ФТИ им. А.Ф. Иоффе, 2016.
  9. 9. Turcheniuk K., Mochalin V.N. Biomedical applications of nanodiamond (Review) // Nanotechnology. 2017. V. 28. № 25. P. 252001. https://doi.org/10.1088/1361-6528/aa6ae4
  10. 10. Maas M., Bollhorst T., Zare R.N., Rezwan K. Diamondosomes: Submicron colloidosomes with nanodiamond shells // Part. Syst. Charact. 2014. V. 31. № 10. P. 1067–1071. https://doi.org/10.1002/ppsc.201400022
  11. 11. Farias B.V., Brown D., Hearn A., Nunn N., Shenderova O., Khan S.A. Nanodiamond-stabilized Pickering emulsions: Microstructure and rheology // J. Colloid Interface Sci. 2020. V. 580. № 15. P. 180–191. https://doi.org/10.1016/j.jcis.2020.07.030
  12. 12. Huang Z., Jurewicz I., Munoz E., Garriga R., Keddie J.L. Pickering emulsions stabilized by carboxylated nanodiamonds over a broad pH range // J. Colloid Interface Sci. 2022. V. 608. P. 2025–2038. https://doi.org/10.1016/j.jcis.2021.10.130
  13. 13. Palamarchuk K.V., Borodina T.N., Kostenko A.V., Chesnokov Y.M., Kamyshinsky R.A., Palamarchuk N.P., Yudina E.B., Nikolskaya E.D., Yabbarov N.G., Mollaeva M.R., Bukreeva T.V. Development of submicrocapsules based on co-assembled like-charged silica nanoparticles and detonation nanodiamonds and polyelectrolyte layers // Pharmaceutics. 2022. V. 14. № 3. P. 575. https://doi.org/10.3390/pharmaceutics14030575
  14. 14. Binks B.P., Liu W., Rodrigues J.A. Novel stabilization of emulsions via the heteroaggregation of nanoparticles // Langmuir. 2008. V. 24. № 9. P. 4443–4446. https://doi.org/10.1021/la800084d
  15. 15. Королева М.Ю., Быданов Д.А., Паламарчук К.В., Юртов Е.В. Стабилизация прямых эмульсий наночастицами SiO2 и Fe3O4 // Коллоидн. журн. 2018. Т. 80. № 3. С. 300–307. https://doi.org/10.7868/S0023291218030060
  16. 16. Palamarchuk K.V., Vantsyan M.A., Kamyshinsky R.A., González-Alfaro Y., Bukreeva T.V. Multifunctional capsules with oil core and shells of SiO2 nanoparticles, nanodiamonds and polyelectrolyte layers with Fe3O4 nanoparticles // Int. J. Nanotechnol. 2019. V.16. № 6–10. P. 510–521. https://doi.org/10.1504/IJNT.2019.106622
  17. 17. Derjaguin B.V., Landau L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes // Acta Physicochim. URSS. 1941. V. 14. P. 633–662.
  18. 18. Verwey E.J.W., Overbeek J.T.G. Theory of the Stability of Lyophobic Colloids. Amsterdam: Elsevier, 1948.
  19. 19. Petosa A.R., Jaisi D.P., Quevedo I.R., Elimelech M., Tufenkji N. Aggregation and deposition of engineered nanomaterials in aquatic environments: Role of physicochemical interactions environ // Sci. Technol. 2010. V. 44. № 17. P. 6532–6549. https://doi.org/10.1021/es100598h
  20. 20. Зонтаг Г., Штренге К. Коагуляция и устойчивость дисперсных систем. Ленинград: Химия, 1973.
  21. 21. Israelachvili J.N. Intermolecular and Surface Forces. California: Academic Press, 2011.
  22. 22. Visser J. On Hamaker constants: A comparison between Hamaker constants and Lifshitz-van der Waals constants // Advan. Colloid Interface Sci. 1972. V. 3. № 4. P. 331–363. https://doi.org/10.1016/0001-8686 (72)85001-2
  23. 23. Костин А.С., Кольцова Э.М. К вопросу о механизме агрегации наночастиц диоксида титана // Фундаментальные исследования. 2012. № 6. С. 647–651.
  24. 24. Facal P.M., Cheng C., Sedev R., Stocco A., Binks B.P., Wang D. Van der Waals Emulsions: Emulsions stabilized by surface-inactive, hydrophilic particles via van der Waals attraction // Angew. Chem. Int. Ed. 2018. V. 57. № 30. P. 9510–9514. https://doi.org/10.1002/anie.201805410
  25. 25. Binks B.P. Particles as surfactants — Similarities and differences // Current Opinion in Colloid & Interface Science. 2002. V. 7. № 1−2. P. 21–41. https://doi.org/10.1016/S1359-0294 (02)00008-0
  26. 26. Pawar A.B., Caggioni M., Ergun R., Hartel R.W., Spicer P.T. Arrested coalescence in Pickering emulsions // Soft Matter. 2011. V. 7. P. 7710–7716. https://doi.org/10.1039/c1sm05457k
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library