RAS Chemistry & Material ScienceКоллоидный журнал Colloid Journal

  • ISSN (Print) 0023-2912
  • ISSN (Online) 3034-543X

TRIC EXPLOSION OF AEROSOLS. TO THE 115TH ANNIVERSARY OF THE TUNGUSKA METEORITE

PII
10.31857/S0023291223600104-1
DOI
10.31857/S0023291223600104
Publication type
Status
Published
Authors
Volume/ Edition
Volume 85 / Issue number 3
Pages
390-393
Abstract
A hypothesis has been proposed according to which the preserved traces of the impact on the nature caused by the explosion of the Tunguska meteorite are the result of electrical discharges in a cloud of solid particles, which, when moving at the space velocity in the upper atmosphere, were heated up to a high temperature and, due to thermionic emission, acquired large positive charges. The released thermo-electrons attached to air molecules and lagged behind the charged particles. The separation of the charges in the cloud caused powerful discharges similar to horizontal lightnings in clouds. The consequences of the discharges in the cloud of highly charged solid particles, which gave rise to the generation of hard ionizing radiation, are discussed.
Keywords
Date of publication
01.05.2023
Year of publication
2023
Number of purchasers
0
Views
30

References

  1. 1. Васильев Н.В. Тунгусский метеорит. Космический феномен лета 1908 г. М.: “Русская панорама”, 2004. 372 C., ISBN 5-931165-106-3.
  2. 2. Turco R.P., Toon O.B., Parc C., Whitten R.C., Pollack J.B., Noerdlinger P. An analysis of the physical, chemical, optical and historical impacts of the 1908 Tunguska meteor fall // Icarus. 1982. V. 50. № 1. P. 1–52. https://doi.org/10.1016/0019-1035 (82)90096-3
  3. 3. Kirsch A.A., Kravtsov A.K. Study of submicron monodisperse droplets generation by electrostatic atomization // Abstract Book AAAR′ 90. 7. C. 2. P. 192.
  4. 4. Кирш А.А. Высокозаряженные аэрозоли // Коллоид. журн. 2022. Т. 84. № 1. С. 42‒48.
  5. 5. Кирш А.А. Электрогидродинамическое получение монодисперсных субмикронных аэрозолей // Коллоид. журн. 2017. Т. 79. № 1. С. 44‒59.
  6. 6. Slattery J.C., Friichtenicht J.F., Hamermesh B. Interaction of micrometeorites with gaseous targets // AIAA J. 1964. V. 2. № 3. P. 543‒548. https://doi.org/10.2514/3.2360
  7. 7. Базелян Э.М., Райзер Ю.П. Искровой разряд. М.: Мир, 1997.
  8. 8. Адамчук Ю.В., Титов В.В. Электрические процессы и образование молний в вулканическом аэрозоле // Препринт Института атомной энергии им. И.В. Курчатова, ИАЭ-4016/1. М.: ИАЭ, 1984.
  9. 9. Стаханов И.П. О физической природе шаровой молнии. М.: Научный мир, 1996.
  10. 10. Kim D.S., Lee D.S., Woo C.G., Choi M. Control of nanoparticle charge via condensation magnification // J. Aerosol Sci. 2006. V. 37. №. 12. P. 1876–1882. https://doi.org/10.1016/j.jaerosci.2006.08.003
  11. 11. Ganapathy R. // The Tunguska explosion of 1908: Discovery of the meteoritic debris near the explosion site and the South Pole // Science. 1983. V. 220. № 4602. P. 1158–1161. https://doi.org/10.1126/science.220.4602.1158
  12. 12. Александров П.А., Горев В.В. Космическая защита Земли: первый эксперимент // Препринт ИППФ НАН РА, Ереван, 2014, ISBN 978-99941-2-948-5.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library