RAS Chemistry & Material ScienceКоллоидный журнал Colloid Journal

  • ISSN (Print) 0023-2912
  • ISSN (Online) 3034-543X

SUPERHYDROPHOBIC COATING BASED ON EP-140 EPOXY ENAMEL: A STUDY OF MECHANICAL ENDURANCE UNDER EXTERNAL ACTIONS

PII
S3034543XS0023291225030046-1
DOI
10.7868/S3034543X25030046
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 87 / Issue number 3
Pages
223-232
Abstract
In this study, the mechanical durability of a superhydrophobic coating fabricated on the basis of industrial epoxy enamel EP-140 was investigated. To achieve a superhydrophobic state, the applied coating was modified by pulsed laser texturing and fluorosilane chemisorption. The aim of the research was to evaluate the coating’s resistance to various mechanical loads typical for outdoor use: prolonged water contact, exposure to high-speed water jets, abrasive wear from falling sand, and multiple removals of adhesive tape. It was shown that the combined approach used in superhydrophobic treatment not only provides high water repellency but also significant resistance to degradation. Experiments revealed only a slight decrease in wetting characteristics, while the heterogeneous wetting regime was maintained, confirming that the coating retains its functionality even under extreme mechanical impacts. The obtained data indicate the promising application of the developed coating in industries that require a combination of high wear resistance and cost-effectiveness.
Keywords
супергидрофобность эпоксидная эмаль лазерная обработка долговечность покрытий
Date of publication
27.03.2025
Year of publication
2025
Number of purchasers
0
Views
18

References

  1. 1. Boinovich L.B., Emelyanenko A.M. Hydrophobic materials and coatings: principles of design, properties and applications // Russ. Chem. Rev. 2008. V. 77. № 7. P. 583-600. https://doi.org/10.1070/RC2008v077n07ABEH003775
  2. 2. Tian X., Verho T., Ras R.H.A. Moving superhydrophobic surfaces toward real-world applications // Science. 2016. V. 352. № 6282. P. 142-143. https://doi.org/10.1126/science.aaf2073
  3. 3. Darmanin T., Guittard F. Recent advances in the potential applications of bioinspired superhydrophobic materials // J. Mater. Chem. A. 2014. V. 2. № 39. P. 16319-16359. https://doi.org/10.1039/C4TA02071E
  4. 4. Jeevahan J., Chandrasekaran M., Britto Joseph G., Durairaj R.B., Mageshwaran G. Superhydrophobic surfaces: a review on fundamentals, applications, and challenges // J. Coat. Technol. Res. 2018. V. 15. № 2. P. 231-250. https://doi.org/10.1007/s11998-017-0011-x
  5. 5. Milionis A., Loth E., Bayer I.S. Recent advances in the mechanical durability of superhydrophobic materials // Adv. Colloid Interface Sci. 2016. V. 229. P. 57-79. https://doi.org/10.1016/j.cis.2015.12.007
  6. 6. Verho T., Bower C., Andrew P., Franssila S., Ikkala O., Ras R.H.A. Mechanically durable superhydrophobic surfaces // Adv. Mater. 2011. V. 23. № 5. P. 673-678. https://doi.org/10.1002/adma.201003129
  7. 7. Кузина Е.А., Емельяненко А.М., Бойнович Л.Б. Супергидрофобизация окрашенных поверхностей для повышения их защитных свойств и придания новых функциональных свойств материалам // Доклады Академии Наук Серия химическая. 2025. № 1.
  8. 8. Emelyanenko A.M., Boinovich L.B. Application of dynamic thresholding of video images for measuring the interfacial tension of liquids and contact angles // Instruments and Experimental Techniques. 2002. V. 45. № 1. P. 44-49. https://doi.org/10.1023/A:1014544124713
  9. 9. Emelyanenko A.M., Boinovich L.B. Analysis of wetting as an efficient method for studying the characteristics of coatings and surfaces and the processes that occur on them: A review // Inorg. Mater. 2011. V. 47. № 15. P. 1667-1675. https://doi.org/10.1134/S0020168511150064
  10. 10. Емельяненко А.М., Бойнович Л.Б. Применение цифровой обработки видеоизображений для определения параметров сидящих и висящих капель // Коллоидный журнал. 2001. Т. 63. № 2. С. 178-193.
  11. 11. Кузина Е.А., Омран Ф.Ш., Емельяненко А.М., Бойнович Л.Б. О важности подбора режима гидрофобизации для получения стойких супергидрофобных покрытий // Коллоидный журнал. 2023. Т. 85. № 1. С. 63-67. https://doi.org/10.31857/S0023291222600614
  12. 12. He S., Chen J., Lu Y., Huang S., Feng K. Enhanced waterproof performance of superhydrophobic SiO2/PDMS coating // Prog. Org. Coat. 2024. V. 197. P. 108845. https://doi.org/10.1016/j.porgcoat.2024.108845
  13. 13. Kumar A., Meena M.K. Fabrication of durable corrosion-resistant polyurethane/SiO2 nanoparticle composite coating on aluminium // Colloid Polym. Sci. 2021. V. 299. № 6. P. 915-924. https://doi.org/10.1007/s00396-021-04814-9
  14. 14. Mousavi S.M.A., Pitchumani R. A comparative study of mechanical and chemical durability of non-wetting superhydrophobic and lubricant-infused surfaces // Colloids Surf. A: Physicochem. Eng. Asp. 2022. V. 643. P. 128711. https://doi.org/10.1016/j.colsurfa.2022.128711
  15. 15. Li T., Lu C., Yuan Z., Liu C., Li Y., Liu Y. Mechanical stability and anti-icing performance of robust aluminum-based superhydrophobic coating // Surface Technology. 2022. V. 51. № 11. P. 385-394. https://doi.org/10.16490/j.cnki.issn.1001-3660.2022.11.036
  16. 16. Golubitchenko T.V., Emelyanenko K.A., Krasovsky V.G., Emelyanenko A.M., Boinovich L.B. Are the imidazole ionic liquids suitable lubricants for slippery coatings? // Langmuir. 2025. V. 41. № 4. P. 2724-2734. https://doi.org/10.1021/acs.langmuir.4c04543
  17. 17. Kuzina E.A., Emelyanenko K.A., Teplonogova M.A., Emelyanenko A.M., Boinovich L.B. Durable superhydrophobic coatings on tungsten surface by nanosecond laser ablation and fluorooxysilane modification // Materials. 2025. V. 16. № 1. P. 196. https://doi.org/10.3390/ma16010196
  18. 18. Liu J.J., He C.Y., Liu B.H., Wang Z.Q., Zhao S.J., Lu Z.W., Zhang Y.Z., Tang Z.Q., Gao X.H., Aday X. A robust photo-thermal and electro-thermal superhydrphobic surface for all-weather anti-icing/deicing // Chem. Eng. J. 2024. V. 489. P. 151338. https://doi.org/10.1016/j.cej.2024.151338
  19. 19. Zhou X., Ou J., Hu Y., Wang F., Fang X., Li W., Chini S.F., Amirfazli A. Robust superhydrophobic coating for photothermal anti-icing and de-icing via electrostatic powder spraying // Prog. Org. Coat. 2024. V. 197. P.108778. https://doi.org/10.1016/j.porgcoat.2024.108778
  20. 20. Deng X., Mammen L., Zhao Y., Lellig P., Müllen K., Li C., Butt H.J., Vollmer D. Transparent, thermally stable and mechanically robust superhydrophobic surfaces made from porous silica capsules // Adv. Mater. (Weinheim). V. 23. № 26. P. 2962-2965. https://doi.org/10.1002/adma.201100410
  21. 21. Birlik Demirel G., Aygül E. Robust and flexible superhydrophobic/superoleophilic melamine sponges for oil-water separation // C Colloids Surf. A: Physicochem. Eng. Asp. 2019. V. 577. P. 613-621. https://doi.org/10.1016/j.colsurfa.2019.05.081
  22. 22. Boinovich L.B., Emelyanenko A.M., Ivanov V.K., Pashinin A.S. Durable icephobic coating for stainless steel // ACS Appl. Mater. Interfaces. 2013. V. 5. № 7. P. 2549-2554. https://doi.org/10.1021/am3031272
  23. 23. Allahdini A., Jafari R., Momen G. Transparent non-fluorinated superhydrophobic coating with enhanced anti-icing performance // Prog. Org. Coat. 2022. V. 165. P. 106758. https://doi.org/10.1016/j.porgcoat.2022.106758
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library