- Код статьи
- S3034543XS0023291225020087-1
- DOI
- 10.7868/S3034543X25020087
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 87 / Номер выпуска 2
- Страницы
- 161-170
- Аннотация
- Комплексом методов (тензиометрия, кондуктометрия, динамическое рассеяние света, спектроскопия, флуориметрия) исследована самоорганизация длинноцепочечных бискватерни-зованных производных 1,4-диазабицикло[2.2.2]октана, содержащих гидроксиэтильную группу. Определены значения критической концентрации мицеллообразования, адсорбционные характеристики на поверхности раздела фаз воздух-вода, солюбилизационная емкость в отношении плохорастворимого в воде красителя ОранжОТ, числа агрегации и размеры ассоциатов. Установлено влияние структуры исследуемых соединений (длина алкильной цепи и заряд головной группы) на мицеллообразующие, антимикробные свойства и гемолитическую активность.
- Ключевые слова
- поверхностно-активное вещество мицеллообразование солюбилизация критическая концентрация мицеллообразования 1,4-диазабицикло[2.2.2]октан
- Дата публикации
- 11.02.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 17
Библиография
- 1. Obłąk E., Futoma-Kołoch B.,Wieczyńska A. Biological activity of quaternary ammonium salts and resistance of microorganisms to these compounds // World J. Microbiol. Biotechnol. 2021. V. 37. P. 22. https://doi.org/10.1007/s11274-020-02978-0
- 2. Hu Y., Xing Y., Yue H. et al. Ionic liquids revolutionizing biomedicine: recent advances and emerging opportunities // Chem. Soc. Rev. 2023. V. 52. P. 7262-7293. https://doi.org/10.1039/D3CS00510K
- 3. Saverina E.A., Frolov N.A., Kamanina O.A. et al. From antibacterial to antibiofilm targeting: An emerging paradigm shift in the development of quaternary ammonium compounds (QACs) // ACS Infect. Dis. 2023. V. 9. № 3. P. 394-422. https://doi.org/10.1021/acsinfecdis.2c00469
- 4. Zakharova L.Y., Pashirova T.N., Doktorovova S. et al. Cationic surfactants: Self-assembly, structure-sctivity sorrelation and their biological applications // Int. J. Mol. Sci. 2019. V. 20. № 22. P. 5534. https://doi.org/10.3390/ijms20225534
- 5. Frantz A.L. Chronic quaternary ammonium compound exposure during the COVID-19 pandemic and the impact on human health // Toxicol. Environ. Health Sci. 2023. V. 15. P. 199-206. https://doi.org/10.1007/s13530-023-00173-w
- 6. Arnold W.A, Blum A., Branyan J. et al. Quaternary ammonium compounds: A chemical class of emerging concern // Environ. Sci. Technol. 2023. V. 57. № 20. P. 7645-7665. https://doi.org/10.1021/acs.est.2c08244
- 7. Raj S., Ramamurthy K. Classification of surfactants and admixtures for producing stable aqueous foam // Adv. Colloid Interface Sci. 2024. V. 331. P. 103234. https://doi.org/10.1016/j.cis.2024.103234
- 8. Bjerk T.R., Severino P., Jain S. et al. Biosurfactants: properties and applications in drug delivery, biotechnology and ecotoxicology // Bioengineering. 2021. V. 8. № 8. P. 115. https://doi.org/10.3390/bioengineering8080115
- 9. Vavina A.V., Seitkalieva M.M., Strukova E.N. et al. Fatty acid-derived ionic liquids as soft and sustainable antimicrobial agents // J. Mol. Liq. 2024. V. 410. P. 125483. https://doi.org/10.1016/j.molliq.2024.125483
- 10. Pashirova T.N., Shaikhutdinova Z.M., Mironov V.F. et al. Ammonium amphiphiles based on natural compounds: Design, synthesis, properties, and biomedical applications. A Review // Dokl. Chem. 2023. V. 509. P. 71-88. https://doi.org/10.1134/S0012500823700179
- 11. Pernak J., Rzemieniecki T., Klejdysz T. et al. Conversion of quinine derivatives into biologically active ionic liquids: Advantages, multifunctionality, and perspectives // ACS Sustain. Chem. Eng. 2020. V. 8. № 25. P. 9263-9267. https://doi.org/10.1021/acssuschemeng.0c03501
- 12. Bazina L., Maravić A., Krce L. et al. Discovery of novel quaternary ammonium compounds based on quinucli-dine-3-ol as new potential antimicrobial candidates // Eur. J. Med. Chem. 2019. V. 163. P. 626-635. https://doi.org/10.1016/j.ejmech.2018.12.023
- 13. Burilova E.A., Pashirova T.N., Lukashenko S.S. et al. Synthesis, biological evaluation and structure-activity relationships of self-assembled and solubilization properties of amphiphilic quaternary ammonium derivatives of quinuclidine // J. Mol. Liq. 2018. V. 272. P. 722-730. https://doi.org/10.1016/j.molliq.2018.10.008
- 14. Pashirova T.N., Zhil’tsova E.P., Kashapov R.R. et al. Supramolecular systems based on 1-alkyl-4-aza-1-azoni-abicyclo[2.2.2]octane bromides // Russ. Chem. Bull. 2010. V. 59. P. 1745-1752. https://doi.org/10.1007/s11172-010-0307-9
- 15. Gilbert P., Al-taae A. Antimicrobial activity of some alkyltrimethylammonium bromides // Lett. Appl. Microbiol. 1985. V. 1. № 6. P. 101-104. https://doi.org/10.1111/j.1472-765X.1985.tb01498.x
- 16. Lainioti G.C. Druvari D. Designing antibacterial-based quaternary ammonium coatings (surfaces) or films for biomedical applications: Recent advances // Int. J. Mol. Sci. 2024. V. 25. № 22. P. 12264. https://doi.org/10.3390/ijms252212264
- 17. Dan W., Gao J., Qi X., et. al. Antibacterial quaternary ammonium agents: Chemical diversity and biological mechanism // Eur. J. Med. Chem. 2022. V. 243. P. 114765. https://doi.org/10.1016/j.ejmech.2022.114765
- 18. Zhou C., Wang Y. Structure-activity relationship of cationic surfactants as antimicrobial agents // Curr. Opin. Colloid Interface Sci. 2020. V. 45. P. 28-43. https://doi.org/10.1016/j.cocis.2019.11.009
- 19. Zhou C., Wang F., Chen H. et al. Selective antimicrobial activities and action mechanism of micelles selfassembled by cationic oligomeric surfactants // ACS Appl. Mater.Interfaces. 2016. V. 8. № 6. P. 4242-4249. https://doi.org/10.1021/acsami.5b12688
- 20. Jennings J., Ašćerić D., Semeraro E.F. et al.Combinatorial screening of cationic lipidoids reveals how molecular conformation affects membrane-targeting antimicrobial cctivity // ACS Appl. Mater.Interfaces. 2023. V. 15. № 34. P. 40178-40190. https://doi.org/10.1021/acsami.3c05481
- 21. Subedi Y.P., Alfindee M.N., Shrestha J.P. et al. Tuning the biological activity of cationic anthraquinone analogues specifically toward Staphylococcus aureus // Eur. J. Med. Chem. 2018. V. 157. P. 683-690. https://doi.org/10.1016/j.ejmech.2018.08.018
- 22. Nadagouda M.N., Vijayasarathy P., Sin A. et al. Antimicrobial activity of quaternary ammonium salts: structure-activity relationship // Med. Chem. Res. 2022. V. 31. P. 1663-1678. https://doi.org/10.1007/s00044-022-02924-9
- 23. Forman M.E., Jennings M.C., Wuest W.M. et al. Building a better quaternary ammonium compound (QAC): Branched tetracationic antiseptic amphiphiles // ChemMedChem. 2016. V. 11. № 13. P. 1401-1405. https://doi.org/10.1002/cmdc.201600176
- 24. Kontos R.C., Schallenhammer S.A., Bentley B.S. et al. An Investigation into rigidity-activity relationships in BisQAC amphiphilic antiseptics // ChemMedChem. 2019. V. 14. № 1. P. 83-87. https://doi.org/10.1002/cmdc.201800622
- 25. Frolov N.A., Fedoseeva K.A., Hansford K.A. et al. Novel phenyl-based bis-quaternary ammonium compounds as broad-spectrum biocides // ChemMedChem. 2021. V. 16. № 19. P. 2954-2959. https://doi.org/10.1002/cmdc.202100284
- 26. Thomas B., Duval R.E., Fontanay S. et al. Synthesis and antibacterial evaluation of bis-thiazolium, bis-imidazolium, and bis-triazolium derivatives // ChemMedChem. 2019. V. 14. № 13. P. 1232-1237. https://doi.org/10.1002/cmdc.201900151
- 27. Pashirova T.N., Zhil´tsova E.P., Lukashenko S.S. et al. Catalytic properties of polymer-colloid complexes based on polyethyleneimines and mono- and diquaternized 1,4-diazabicyclo[2.2.2]octane derivatives in the hydrolysis of phosphorus acids esters // Russ. Chem. Bull. 2015. V. 64. P. 2879-2884. https://doi.org/10.1007/s11172-015-1242-6
- 28. Zhiltsova E.P, Lukashenko S.S., Pashirova T.N. et al. Self-assembling systems based on diquaternized derivatives of 1,4-diazabicyclo[2.2.2]octane // J. Mol. Liq. 2015. V. 210. P. 136-142. https://doi.org/10.1016/j.molliq.2015.01.018
- 29. Pashirova T.N., Burilova E.A., Lukashenko S.S. et al. Nontoxic antimicrobial micellar systems based on mono- and dicationic Dabco-surfactants and furazolidone: Structure-solubilization properties relationships // J. Mol. Liq. 2019. V. 296. P. 112062. https://doi.org/10.1016/j.molliq.2019.112062
- 30. Zakharova L.Y., Gaysin N.K., Gnezdilov O.I. et al. Micellization of alkylated 1.4-diazabicyclo[2.2.2] octane by nuclear magnetic resonance technique using pulsed gradient of static magnetic field // J. Mol. Liq. 2012. V. 167. P. 89-93. https://doi.org/10.1016/j.molliq.2012.01.015
- 31. Voloshina A.D., Sapunova A.S., Kulik N.V. et al. Antimicrobial and cytotoxic effects of ammonium derivatives of diterpenoids steviol and isosteviol // Bioorg. Med. Chem. 2021. V. 32. P. 115974. https://doi.org/10.1016/j.bmc.2020.115974
- 32. Rosen M.J., Kunjappu J.T. Surfactants and interfacial phenomena. John Wiley & Sons, Inc. 2012. https://doi.org/10.1002/9781118228920
- 33. Song L.D., Rosen M.J. Surface properties, micelli-zation, and premicellar aggregation of gemini surfactants with rigid and flexible spacers // Langmuir. 1996. V. 12. № 5. P. 1149-1153. https://doi.org/10.1021/la950508t
- 34. Rosen M.J., Liu L. Surface activity and premicellar aggregation of some novel diquaternary gemini surfactants // J. Am. Oil Chem. Soc. 1996. V. 73. № 7. P. 885-890. https://doi.org/10.1007/BF02517990
- 35. Tsubone K., Arakawa Y., Rosen M.J. Structural effects on surface and micellar properties of alkanediyl-α,ω-bis(sodium N-acyl-β-alaninate) gemini surfactants // J. Colloid Interface Sci. 2003. V. 262. № 2. P. 516-524. https://doi.org/10.1016/S0021-9797 (03)00078-X
- 36. Fisicaro E., Compari C., Biemmi M. et al. Unusual behavior of the aqueous solutions of gemini bispyridinium surfactants: apparent and partial molar enthalpies of the dimethanesulfonates // J. Phys. Chem. B. 2008. V. 112. № 39. P. 12312-12317. https://doi.org/10.1021/jp804271z
- 37. Chauhan V., Singh S., Kaur T. Self-assembly and biophysical properties of gemini 3-alkyloxypyridinium amphiphiles with a hydroxyl-substituted spacer // Langmuir. 2015. V. 31. № 10. P. 2956-2966. https://doi.org/10.1021/la5045267
- 38. Pashirova T.N., Sapunova A.S., Lukashenko S.S. et al. Synthesis, structure-activity relationship and biological evaluation of tetracationic gemini Dabco-surfactants for transdermal liposomal formulations // Int. J. Pharm. 2020. V. 575. P. 118953. https://doi.org/10.1016/j.ijpharm.2019.118953
- 39. Lianos P., Zana R. Fluorescence probe studies of the effect of concentration on the state of aggregation of surfactants in aqueous solution // J. Colloid Interface Sci. 1981. V. 84. № 1. P. 100-107. https://doi.org/10.1016/0021-9797 (81)90263-0
- 40. Zana R., Binana-Limbele W., Kamenka N. et al. Ethyl(hydroxyethyl)cellulose-cationic surfactant interactions: electrical conductivity, self-diffusion and time-resolved fluorescence quenching investigations // J. Phys. Chem. 1992. V. 96. № 13. P. 5461-5465. https://doi.org/10.1021/j100192a050
- 41. Danino D., Talmon Y., Zana R. Alkanediyl-. alpha.,.omega.-bis(dimethylalkylammonium bromide) surfactants (dimeric surfactants). 5. Aggregation and microstructure in aqueous solutions // Langmuir. 1995. V. 11. № 5. P. 1448-1456. https://doi.org/10.1021/la00005a008
- 42. Araki M., Fujii S., Lee J.H. et al. Non-dependence of dodecamer structures on alkyl chain length in platonic micelles // Soft. Matter. 2019. V. 15. № 17. P. 3515-3519. https://doi.org/10.1039/C9SM00076C
- 43. Fujii S., Yamada S., Matsumoto S. et al. Platonic micelles: Monodisperse micelles with discrete aggregation numbers corresponding to regular polyhedra // Sci. Rep. 2017. V. 7. P. 44494. https://doi.org/10.1038/srep44494
- 44. Tishkova E.P., Fedorov S.B., Kudryavtseva L.A. et al. Antimicrobial activity and colloidal properties of N-alkyl-N-(2-oxyethyl)dimethylammonium halides // Pharm. Chem. J. 1989. V. 23. P. 418-422. https://doi.org/10.1007/BF00758296
- 45. Balgavý P., Devínsky F. Cut-off effects in biological activities of surfactants // Adv. Colloid Interface Sci. 1996. V. 66. P. 23-63. https://doi.org/10.1016/0001-8686 (96)00295-3
- 46. Devínsky F., Kopecka-Leitmanová A., Šeršeň F. et al. Cut-off effect in antimicrobial activity and in membrane perturbation efficiency of the homologous series of N,N -dimethylalkylamine oxides // J. Pharm. Pharmacol. 1990. V. 42. № 11. P. 790-794. https://doi.org/10.1111/j.2042-7158.1990.tb07022.x
- 47. Pashirova T.N., Lukashenko S.S., Zakharov S.V. et al. Self-assembling systems based on quaternized derivatives of 1,4-diazabicyclo[2.2.2]octane in nutrient broth as antimicrobial agents and carriers for hydrophobic drugs // Colloids Surf. B Biointerfaces. 2015. V. 127. P. 266-273. https://doi.org/10.1016/j.colsurfb.2015.01.044
- 48. Zhiltsova E.P., Pashirova T.N., Kashapov R.R. et al. Alkylated 1,4-diazabicyclo[2.2.2]octanes: selfassociation, catalytic properties, and biological activity // Russ. Chem. Bull. 2012. V. 61. P. 113-120. https://doi.org/10.1007/s11172-012-0016-7
- 49. Manaargadoo-Catin M., Ali-Cherif A., Pougnas J.-L. et al. Hemolysis by surfactants - A review // Adv. Colloid Interface Sci. 2016. V. 228. P. 1-16. https://doi.org/10.1016/j.cis.2015.10.011
- 50. Gilbert P., Moore L.E. Cationic antiseptics: diversity of action under a common epithet // J. Appl. Microbiol. 2005. V. 99. № 4. P. 703-715. https://doi.org/10.1111/j.1365-2672.2005.02664.x
- 51. Jones M.N. Surfactants in membrane solubilisation // Int. J. Pharm. 1999. V. 177. № 2. P. 137-159. https://doi.org/10.1016/S0378-5173 (98)00345-7