ОХНМКоллоидный журнал Colloid Journal

  • ISSN (Print) 0023-2912
  • ISSN (Online) 3034-543X

КАПИЛЛЯРНЫЕ СИЛЫ МЕЖДУ ШЕРОХОВАТЫМИ ПОВЕРХНОСТЯМИ, ПОЛУЧЕННЫМИ МЕТОДАМИ МИКРО/НАНОТЕХНОЛОГИИ

Код статьи
S3034543X25040134-1
DOI
10.7868/S3034543X25040134
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 87 / Номер выпуска 4
Страницы
428-442
Аннотация
Капиллярные силы являются одним из основных источников адгезии между элементами микросистем. Адгезия может проявляться при изготовлении или эксплуатации устройства и играть негативную или позитивную роль. В работе описан метод оценки капиллярной силы между гидоофильными шероховатыми поверхностями как функции относительной влажности и номинальной площади контакта. Метод основан на подсчете числа пиков шероховатости, между которыми спонтанно образуются капиллярные мостики. Для реализации метода требуется детальная информация о шероховатости контактирующих поверхностей, которая может быть получена с помощью атомно-силового микроскопа (ACM). Идея метода иллюстрируется на примере термически напыленных пленок золота разной толщины, контактирующих с гладкой поверхностью кремния. Используются ACM сканы поверхности площадью 20 × 20 мкм и разрешением 4096 пикселей на линию. Развитая теория воспроизводит основные закономерности, наблюдаемые экспериментально. В частности, показано, что относительная роль капиллярных сил снижается с увеличением номинальной площади контакта, и основную роль в адгезии начинают играть дисперсионные силы. Результаты работы важны для проектирования микросистем и экспериментов по измерению дисперсионных сил.
Ключевые слова
капиллярные силы шероховатость поверхности адгезия микросистемы
Дата публикации
05.06.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
39

Библиография

  1. 1. Legtenberg R., et al. Stiction of surface micromachined structures after rinsing and drying: model and investigation of adhesion mechanisms // Sensors and actuators A: Physical. 1994. V. 43. № 1–3. P. 230–238. https://doi.org/10.1016/0924-4247 (93)00654-M
  2. 2. Tas N., et al. Stiction in surface micromachining // Journal of Micromechanics and Microengineering. 1996. V. 6. № 4. P. 385. https://doi.org/10.1088/0960-1317/6/4/005
  3. 3. Maboudian R., Howe R.T. Critical review: Adhesion in surface micromechanical structures // Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 1997. V. 15. № 1. P. 1–20. https://doi.org/10.1116/1.589247
  4. 4. Saleem M.M., Nawaz H.A systematic review of reliability issues in RF-MEMS switches // Micro and Nanosystems. 2019. V. 11. № 1. P. 11–33. https://doi.org/10.2174/1876402911666190204113856
  5. 5. DelRio F.W., et al. The role of van der Waals forces in adhesion of micromachined surfaces // Nature materials. 2005. V. 4. № 8. P. 629–634. https://doi.org/10.1038/nmat1431
  6. 6. Palasantzas G., Sedighi M., Svetovoy V.B. Applications of Casimir forces: Nanoscale actuation and adhesion // Applied Physics Letters. 2020. V. 117. № 12. P. 120501. https://doi.org/10.1063/5.0023150
  7. 7. Lyashenko I.A., Popov V.L. Effect of roughness on capillary contact shapes in tangential shear: Experiments // Physical Mesomechanics. 2021. V. 24. № 5. P. 561–569. https://doi.org/10.1134/S1029959921050076
  8. 8. Mastrangelo C.H., Hsu C.H. Mechanical stability and adhesion of microstructures under capillary forces. I. Basic theory // Journal of Microelectromechanical systems. 1993. V. 2. № 1. P. 33–43. https://doi.org/10.1109/84.232593
  9. 9. Mastrangelo C.H., Hsu C.H. Mechanical stability and adhesion of microstructures under capillary forces. II. Experiments // Journal of Microelectromechanical systems. 1993. V. 2. № 1. P. 44–55. https://doi.org/10.1109/84.232594
  10. 10. De Boer M.P., Michalske T.A. Accurate method for determining adhesion of cantilever beams // Journal of Applied Physics. 1999. V. 86. № 2. P. 817–827. https://doi.org/10.1063/1.370809
  11. 11. Knapp J.A., de Boer M.P. Mechanics of microcantilever beams subject to combined electrostatic and adhesive forces // Journal of Microelectromechanical Systems. 2002. V. 11. № 6. P. 754–764. https://doi.org/10.1109/JMEMS.2002.805047
  12. 12. DelRio F.W., et al. Rough surface adhesion in the presence of capillary condensation // Applied Physics Letters. 2007. V. 90. № 16. P. 163104. https://doi.org/10.1063/1.2723658
  13. 13. De Boer M.P. Capillary adhesion between elastically hard rough surfaces // Experimental mechanics. 2007. V. 47. P. 171–183. https://doi.org/10.1007/s11340-006-0631-z
  14. 14. Svetovoy V.B., et al. Measuring the dispersion forces near the van der Waals–Casimir transition // Physical Review Applied. 2020. V. 13. № 6. P. 064057. https://doi.org/10.1103/PhysRevApplied.13.064057
  15. 15. Harris B.W., Chen F., Mohideen U. Precision measurement of the Casimir force using gold surfaces // Physical Review A. 2000. V. 62. № 5. P. 052109. https://doi.org/10.1103/PhysRevA.62.052109
  16. 16. Liu M., et al. Precision measurements of the gradient of the Casimir force between ultraclean metallic surfaces at larger separations // Physical Review A. 2019. V. 100. № 5. P. 052511. https://doi.org/10.1103/PhysRevA.100.052511
  17. 17. Torricelli G., et al. Switching Casimir forces with phase-change materials // Physical Review A – Atomic, Molecular, and Optical Physics. 2010. V. 82. № 1. P. 010101. https://doi.org/10.1103/PhysRevA.82.010101
  18. 18. Sedighi M., Svetovoy V.B., Palasantzas G. Casimir force measurements from silicon carbide surfaces // Physical Review B. 2016. V. 93. № 8. P. 085434. https://doi.org/10.1103/PhysRevB.93.085434
  19. 19. Ata A., Rabinovich Y.I., Singh R.K. Role of surface roughness in capillary adhesion // Journal of Adhesion Science and Technology. 2002. V. 16. № 4. P. 337–346. https://doi.org/10.1163/156856102760067145
  20. 20. Van Zwol P.J., Palasantzas G., De Hosson J.T.M. Influence of random roughness on the adhesion between metal surfaces due to capillary condensation // Applied Physics Letters. 2007. V. 91. № 10. P. 101905. https://doi.org/10.1063/1.2768919
  21. 21. Van Zwol P.J., Palasantzas G., De Hosson J.T.M. Influence of roughness on capillary forces between hydrophilic surfaces // Physical Review E – Statistical, Nonlinear, and Soft Matter Physics. 2008. V. 78. № 3. P. 031606. https://doi.org/10.1103/PhysRevE.78.031606
  22. 22. Postnikov A.V., Uvarov I.V., Svetovoy V.B. Measurement of the adhesion energy between Si and Au caused by dispersion forces // Physical Review B. 2025. V. 111. № 8. P. 085420. https://doi.org/10.1103/PhysRevB.111.085420
  23. 23. Broer W., et al. Roughness correction to the Casimir force at short separations: Contact distance and extreme value statistics // Physical Review B – Condensed Matter and Materials Physics. 2012. V. 85. № 15. P. 155410. https://doi.org/10.1103/PhysRevB.85.155410
  24. 24. Meakin P. The growth of rough surfaces and interfaces // Physics Reports. 1993. V. 235. № 4–5. P. 189–289. https://doi.org/10.1016/0370-1573 (93)90047-H
  25. 25. Persson B.N.J. Relation between interfacial separation and load: a general theory of contact mechanics // Physical Review Letters. 2007. V. 99. № 12. P. 125502. https://doi.org/10.1103/PhysRevLett.99.125502
  26. 26. Parsons D.F., Walsh R.B., Craig V.S.J. Surface forces: Surface roughness in theory and experiment // The Journal of Chemical Physics. 2014. V. 140. № 16. P. 164501. https://doi.org/10.1063/1.4871412
  27. 27. Van Zwol P.J., Svetovoy V.B., Palasantzas G. Distance upon contact: Determination from roughness profile // Physical Review B – Condensed Matter and Materials Physics. 2009. V. 80. № 23. P. 235401. https://doi.org/10.1103/PhysRevB.80.235401
  28. 28. Murayyeva T.I., et al. Excessive number of high asperities for sputtered rough films // Physical Review B. 2021. V. 104. № 3. P. 035415. https://doi.org/10.1103/PhysRevB.104.035415
  29. 29. Гумбель Э. Статистика экстремальных значений // Мир. Москва. 1965.
  30. 30. Greenwood J.A., Tripp J.H. The contact of two nominally flat rough surfaces // Proceedings of the institution of mechanical engineers. 1970. V. 185. № 1. P. 625–633. https://doi.org/10.1243/PIME_PROC_1970_185_069_02
  31. 31. Soldatenkov I.A., Stepanov F.I., Svetovoy V.B. Dispersion forces and equilibrium distance between deposited rough films in contact // Physical Review B. 2022. V. 105. № 7. P. 075401. https://doi.org/10.1103/PhysRevB.105.075401
  32. 32. Palasantzas G. Roughness spectrum and surface width of self-affine fractal surfaces via the K-correlation model // Physical Review B. 1993. V. 48. № 19. P. 14472–14478. https://doi.org/10.1103/PhysRevB.48.14472
  33. 33. Islam A.Z.M.A., Klassen R.J. Kinetics of length-scale dependent plastic deformation of gold microspheres // Journal of Materials Research. 2017. V. 32. № 18. P. 3507–3515. https://doi.org/10.1557/jmr.2017.223
  34. 34. Johnson K.L., Kendall K., Roberts A.A.D. Surface energy and the contact of elastic solids // Proceedings of the Royal Society of London. A. Mathematical and physical sciences. 1971. V. 324. № 1558. P. 301–313. https://doi.org/10.1098/rspa.1971.0141
  35. 35. Derjaguin B.V., Muller V.M., Toporov Y.P. Effect of contact deformations on the adhesion of particles // Journal of Colloid and Interface Science. 1975. V. 53. № 2. P. 314–326. https://doi.org/10.1016/0021-9797 (75)90018-1
  36. 36. Muller V.M., Yushchenko V.S., Derjaguin B.V. On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane // Journal of Colloid and Interface Science. 1980. V. 77. № 1. P. 91–101. https://doi.org/10.1016/0021-9797 (80)90419-1
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека