- Код статьи
- S3034543X25040069-1
- DOI
- 10.7868/S3034543X25040069
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 87 / Номер выпуска 4
- Страницы
- 332-345
- Аннотация
- Рассмотрена молекулярно-термодинамическая модель образования и роста немонных агрегатов из молекул ПАВ в неполярном растворителе при отсутствии воды, допускающая флуктуационное сосуществование мицелл различной формы без активационных барьеров между ними. Работа агрегации мицелл выводится для раствора CE в гептане с использованием данных молекулярной динамики. В рассматриваемой модели для любых чисел агрегации минимальная работа агрегации зависит не только от чисел агрегации и концентрации мономеров ПАВ, но и от двух независимых параметров формы, характеризующих отклонение от сферической формы агрегата. Такой подход обеспечивает единообразное описание как дисковых, так и цилиндрических мицелл.
- Ключевые слова
- поверхностно-активные вещества мицеллы термодинамика агрегативное равновесие статистическое описание
- Дата публикации
- 25.04.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 35
Библиография
- 1. Tauford C. The hydrophobic effect: Formation of micelles and biological membranes. 2–nd Ed. J. Wiley & Sons. Toronto. 1980.
- 2. Israelachvili J., Mitchell D., Ninham B. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers // J. Chem. Soc., Faraday Trans. II. 1976. V. 72. P. 1525–1568. https://doi.org/10.1039/F29767201525
- 3. Kshevetskiy M., Shchekin A. The aggregation work and shape of molecular aggregates upon the transition from spherical to globular and cylindrical micelles // Colloid J. 2005. V. 67. P. 324–336. https://doi.org/10.1007/s10595-005-0100-x
- 4. Lerebours B., Perly B., Pileni M. Polymerization of cetyltrimethylammonium methacrylate direct micelles // Progress in Colloid and Polymer Science. 1989. V. 79. P. 239–243. https://doi.org/10.1007/BFb0116215
- 5. Blankschtein D., Thurston G., Benedek G.B.J. Phenomenological theory of equilibrium thermodynamic properties and phase separation of micellar solutions // J. Chem. Phys. 1986. V. 85. № 12. P. 7268–7288. https://doi.org/10.1063/1.451365
- 6. Yoshimura S., Shirai S., Einaga Y. Light-scattering characterization of the wormlike micelles of hexaoxyethylene dodecyl CE and hexaoxyethylene tetradecyl CE ethers in dilute aqueous solution // J. Phys. Chem. B. 2004. V. 108. № 40. P. 15477–15487. https://doi.org/10.1021/jp0488214
- 7. Imae T., Kamiya R., Ikeda S. Formation of spherical and rodlike micelles of cetyltrimethylammonium bromide in aqueous NaBr solutions // J. Colloid Interface Sci. 1985. V. 108. № 1. P. 215–225. https://doi.org/10.1016/0021-9797 (85)90253-X
- 8. Porte G., Poggi Y., Appell J., Maret G. Large micelles in concentrated solutions. The second critical micellar concentration // The Journal of Physical Chemistry. 1984. V. 88. № 23. P. 5713–5720. https://doi.org/10.1021/j150667a051
- 9. Ruckenstein E., Nagarajan R. Aggregation of amphiphiles in nonaqueous media // J. Phys. Chem. 1980. V. 84. № 11. P. 1349–1358. https://doi.org/10.1021/j100448a013
- 10. Ljunggren S., Eriksson J. The mechanics and thermodynamics of dischanged micelles // J. Chem. SOC., Faraday Trans. 2. 1986. V. 82. № 6. P. 913–928. https://doi.org/10.1039/F29868200913
- 11. Nagarajan R., Ruckenstein E. Theory of surfactant self-assembly: a predictive molecular thermodynamic approach // Langmuir. 1991. V. 7. № 12. P. 2934–2969. https://doi.org/10.1021/la00060a012
- 12. Zueva O., Rukhov V., Zuev Yu. Morphology of ionic micelles as studied by numerical solution of the Poisson equation // ACS Omega. 2022. V. 7. № 7. P. 6174–6183. https://doi.org/10.1021/acsomega.1c06665
- 13. Zueva O., Kusova A., Makarova A., et al. Reciprocal effects of multi-walled carbon nanotubes and oppositely charged surfactants in bulk water and at interface // Colloids and surfaces A. 2020. V. 603. P. 125296. https://doi.org/10.1016/j.colsurfa.2020.125296
- 14. Bradley-Shaw J., Camp P., Dowding P., Lewias K. Glycerol monoclastic reverse micelles in nonpolar solvents: Computer simulations and small-angle neutron scattering // J. Phys. Chem. B. 2015. V. 119. № 11. P. 4321–4331. https://doi.org/10.1021/acs.jpcb.5b00213
- 15. Movchan T., Rusanov A., Plonikova E. Reverse micelles and protomicelles of tetraethylene glycol mono-dodecyl ether in systems with heptane and nile red // Russ. J. Gen. Chem. 2022. V. 92. P. 650–658. https://doi.org/10.1134/S1070363222400065
- 16. Kopanichuk I., Novikov V., Vanin A., Brodskaya E. The electric properties of AOT reverse micelles by molecular dynamics simulations. // J. Molec. Liquids. 2019. V. 296. P. 111960. https://doi.org/10.1016/j.molliq.2019.111960
- 17. Kopanichuk I., Vedenchuk E., Koneva A., Vanin A. Structural properties of Span 80/Tween 80 reverse micelles by molecular dynamics simulations // J. Phys. Chem. B. 2018. V. 122. № 33. P. 8047–8055. https://doi.org/10.1021/acs.jpcb.8b03945
- 18. Нееdukawa A. Исследование строения обратных мицелл методом молекулярной динамики. LAP Lambert Academic Publishing. 2012.
- 19. Victorov A., Voznesensky M., Safonova E. Spatial networks in solutions of wormlike aggregates: universal behaviour and molecular portraits // Russian chemical reviews. 2015. V. 84. № 7. P. 693–711. https://doi.org/10.1070/RCR4524
- 20. Victorov A., Molchanov V., Sorina P., et al. Modeling micellar growth and branching in mixtures of zwitterionic with ionic surfactants // Langmuir. 2022. V. 38. № 39. P. 11929–11940. https://doi.org/10.1021/acs.langmuir.2c01677
- 21. Palazzo G. Wormlike reverse micelles // Soft Matter. 2013. V. 9. № 45. P. 10668–10677. https://doi.org/10.1039/C3SM52193A
- 22. Nagarajan R. Structure-performance relationships in surfactants. Ed. by K. Esumi, M. Ueno. Surfactant Science. V. 112. Boca Raton: CRC Press. 2013.
- 23. Danov K., Kralchevsky P., Stoyanov S., et al. Analytical modeling of micelle growth. 1. Chain-conformation free energy of binary mixed spherical, wormlike and lamellar micelles // Journal of Colloid and Interface Science. 2019. V. 547. P. 245–255. https://doi.org/10.1016/j.jcis.2019.03.105
- 24. Danov K., Kralchevsky P., Stoyanov S., et al. Growth of wormlike micelles in nonionic surfactant solutions: Quantitative theory vs. experiment // Adv. Colloid Interface Sci. 2018. V. 256. P. 1–22. https://doi.org/10.1016/j.cis.2018.05.006
- 25. Iyer J., Blankschtein D. Molecular-thermodynamic framework to predict the micellization behavior of mixtures of fluorocarbon-based and hydrocarbon-based surfactants // J. Phys. Chem. B. 2014. V. 118. № 9. P. 2377–2388. https://doi.org/10.1021/jp4047209
- 26. Goldstye A., Blankschtein D. Molecular-thermodynamic theory of micellization of multicomponent surfactant mixtures: 2. pH-sensitive surfactants // J. Phys. Chem. B. 2007. V. 32. № 11. P. 5953–5962. https://doi.org/10.1021/la063082z
- 27. Eroshkin Yu., Adchenyan L., Shchekin A. Model of inverse “dry” micelles with coexisting spherical, globular and cylindrical aggregates // Physica A. 2023. V. 615. P. 128615. https://doi.org/10.1016/j.physa.2023.128615
- 28. Shchekin A., Adchenyan L., Eroshkin Yu., Volkov N. Work of formation of direct and inverse micelle as a functions of aggregation number // Colloid J. 2022. V. 84. P. 109–119. https://doi.org/10.1134/S106193322010124
- 29. Anachkov S., Kralchevsky P., Danov K., et al. Discline vs. cylindrical micelles: Generalized model of micelle growth and data interpretation // Journal of Colloid and Interface Science. 2014. V. 416. P. 258–273. https://doi.org/10.1016/j.jcis.2013.11.002
- 30. Rusanov A., Shchekin A. Micelle formation in solutions of surfactants. St. Petersburg: Lan’. 2016. 2nd ed.
- 31. Smith G., Brown P., James C., et al. The effect of solvent and counterion variation on inverse micelle CMCs in hydrocarbon solvents // Colloids Surf. A. 2016. V. 494. P. 194–200. https://doi.org/10.1016/j.colsurfa.2016.01.020
- 32. Urano R., Pantelopulos G., Straub J. Aerosol-OT surfactant forms stable reverse micelles in apolar solvent in the absence of water // J. Phys. Chem. B. 2019. V. 123. № 11. P. 2546–2557. https://doi.org/10.1021/acs.jpcb.8b07847
- 33. Volkov N., Shchekin A., Posysoev M., et al. Investigation of the structural and transport properties of micellar solutions in polar and nonpolar solvents by the method of molecular dynamics, in modern chemical physics at the intersection of physics, chemistry and biology // Abstracts of the International Scientific Conference. Chernoglovska. 2021. P. 418–419.
- 34. Smith G., Brown P., Rogers S., Eastoe J. Evidence for a critical micelle concentration of surfactants in hydrocarbon solvents // Langmuir. 2013. V. 29. № 10. P. 3252–3258. https://doi.org/10.1021/la400117s
- 35. Daful A., Avalos J., Mackie A. Model shape transitions of micelles: spheres to cylinders and disks // Langmuir. 2012. V. 28. № 8. P. 3730–3743. https://doi.org/10.1021/la204132c
- 36. Johnsson M., Edwards K. Liposomes, disks, and spherical micelles: Aggregate structure in mixtures of gel phase phosphatidylcholines and poly(ethylene glycol)-phospholipids // Biophysical Journal. 2022. V. 85. № 6. P. 3839–3847. https://doi.org/10.1016/S0006-3495 (03)74798-5
- 37. Edmonds W., Li Zh., Hillmyer M., Lodge T. Disk micelles from nonionic coil-coil diblock copolymers // Macromolecules. 2006. V. 39. № 13. P. 4526–4530. https://doi.org/10.1021/ma060633j
- 38. Rusanov A., Grinin A., Kuni F., Shchekin A. Nanostructural models of micelles and premicellar aggregates // Russ. J. Gen. Chem. 2002. V. 72. P. 607–621. https://doi.org/10.1023/A:1016348617547
- 39. Посысоев М. Молекулярно-динамическое моделирование распределения агрегатов по размерам для неионного ПАВ в неполярном растворителе // ВКР. 2022. http://stat.phys.spbu.ru/Aspirant/2022/Posysoev.pdf
- 40. Naharros-Molinero A., Caballo-Gonzalez M., de la Mata F., Garcia-Gallego S. Direct and reverse pluronic micelles: Design and characterization of promising drug delivery nanosystems // Pharmaceutics. 2022. V. 14. № 12. P. 2628. https://doi.org/10.3390/pharmaceutics14122628
- 41. Helfand E., Frisch H.L., Lebowitz J.L. Theory of the two- and one-dimensional rigid sphere fluids // J. Chem. Phys. 1961. V. 34. № 3. P. 1037. https://doi.org/10.1063/1.1731629
- 42. Santos A., Haro M.L., Yuse S.B. An accurate and simple equation of state for hard disks // J. Chem. Phys. 1995. V. 103. P. 4622–4625. https://doi.org/10.1063/1.470649
- 43. Flory P. Principles Of Polymer Chemistry. Ithaca: Cornell Univ. Press. 1962.
- 44. May S., Ben-Shaul A. Molecular packing in cylindrical micelles, Ch. 2 in giant micelles. Properties and applications. Eds. By R. Zana, E.W. Kaler. Boca Raton: CRC Press. Taylor & Francis Group. 2007.