- PII
- S3034543X25040034-1
- DOI
- 10.7868/S3034543X25040034
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 87 / Issue number 4
- Pages
- 289-298
- Abstract
- The results of a theoretical investigation of electroconvection emergence and development near an ion-selective area under a uniform electrolyte solution flow through this area are presented in the paper. The linear stability analysis of a stationary solution has allowed obtaining the dependence of the critical electric potential difference (that triggers electrokinetic instability) on the external flow rate. Two-dimensional numerical simulation has revealed the peculiarities of nonlinear electroconvection regimes. The research has proven the stabilizing effect of the external flow: electroconvection occurs at larger potential differences, whereas its regimes change each other faster with increasing the potential difference. Understanding these effects is useful in applications like the development of analyte preconcentration systems in microlaboratories for chemical analysis of biological liquids.
- Keywords
- электрокинетика ионообменная мембрана концентрационная поляризация численное моделирование электрокинетическая неустойчивость электроконвекция лаборатория на чипе
- Date of publication
- 29.04.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 31
References
- 1. Wang Y.-C., Stevens A.L., Han J. Million-fold preconcentration of proteins and peptides by nanofluidic filter // Anal. Chem. 2005. V. 77. № 14. P. 4293–4299. https://doi.org/10.1021/ac050321z
- 2. Wang S.-C., Wei H.-H., Chen H.-P., Tsai M.-H., Yu C.-C., Chang H.-C. Dynamic superconcentration at critical-point double-layer gates of conducting nanoporous granules due to asymmetric tangential fluxes // Biomicrofluidics. 2008. V. 2. № 1. P. 014102. https://doi.org/10.1063/1.2904640
- 3. Ouyang W., Ye X., Li Z., Han J. Deciphering ion concentration polarization-based electrokinetic molecular concentration at the micro-nanofluidic interface: theoretical limits and scaling laws // Nanoscale. 2018. V. 10. № 32. P. 15187–15194. https://doi.org/10.1039/c8m02170h
- 4. Ouyang W., Han J. Universal amplification-free molecular diagnostics by billion-fold hierarchical nanofluidic concentration // Proc. Natl. Acad. Sci. 2019. V. 116. № 33. P. 16240–16249. https://doi.org/10.1073/pnas.1904513116
- 5. Rubinstein I., Shulman L. Voltage against current curves of cation-exchange membranes // J. Chem. Soc., Faraday Trans. 2. 1979. V. 75. P. 231–246. https://doi.org/10.1039/f29797500231
- 6. Rubinstein I., Zaltzman B. Electro-osmotically induced convection at a permeslective membrane // Phys. Rev. E. 2000. V. 62. № 2. P. 2238–2251. https://doi.org/10.1103/physreve.62.2238
- 7. Nikonenko V.V., Pismenskaya N.D., Belova E.I., Sistat P., Huguet P., Pourcelly G., Larchet C. Intensive current transfer in membrane systems: Modelling, mechanisms and application in electrodialysis // Adv. Colloid Interface Sci. 2010. V. 160. № 1–2. P. 101–123. https://doi.org/10.1016/j.cis.2010.08.001
- 8. Шеменов В.С., Никитин Н.В., Ганченко Г.С., Демехин Е.А. Численное моделирование электрокинетической неустойчивости в полупроницаемых мембранах // Доклады Российской академии наук. 2011. Т. 440. № 5. С. 625–630.
- 9. Левич В.Г. Физико-химическая гидродинамика. М.: Физматгиз, 1959.
- 10. Chen Q., Liu X., Lei Y., Zhu H. An electrokinetic pre-concentration trapping pattern in electromembrane microfluidics // Phys. Fluids. 2022. V. 34. № 9. P. 092009. https://doi.org/10.1063/5.0109394
- 11. Butykski D.Yu., Pismenskaya N.D., Apel P.Yu., Sabbatovsky K.G., Nikonenko V.V. Highly selective separation of singly charged cations by countercurrent electromigration with a track-etched membrane // J. Membr. Sci. 2021. V. 635. P. 119449. https://doi.org/10.1016/j.memsci.2021.119449
- 12. Chang H.-C., Yossifon G., Demekhin E.A. Nanoscale electrokinetics and microvortices: How microhydrodynamics affects nanofluidic ion flux // Annu. Rev. Fluid Mech. 2012. V. 44. № 1. P. 401–426. https://doi.org/10.1146/annurev-fluid-120710-101046
- 13. Berzina B., Anand R.K. Tutorial review: Enrichment and separation of neutral and charged species by ion concentration polarization focusing // Anal. Chim. Acta. 2020. V. 1128. P. 149–173. https://doi.org/10.1016/j.aca.2020.06.021
- 14. Sarapulova V.V., Pasechnaya E.L., Titorova V.D., Pismenskaya N.D., Apel P.Yu., Nikonenko V.V. Electrochemical properties of ultrafiltration and nanofiltration membranes in solutions of sodium and calcium chloride // Membr. Membr. Technol. 2020. V. 2. № 5. P. 332–350. https://doi.org/10.1134/s2517751620050066
- 15. Butykski D., Troitsky V., Chupynina D., Danmak L., Larchet C., Nikonenko V. Application of hybrid electrobaromembrane process for selective recovery of lithium from cobalt- and nickel-containing leaching solutions // Membranes. 2023. V. 13. № 5. P. 509. https://doi.org/10.3390/membranes13050509
- 16. Rubinstein I., Zaltzman B. Equilibrium electroconvective instability // Phys. Rev. Lett. 2015. V. 114. № 11. P. 114502. https://doi.org/10.1103/physrevlett.114.114502
- 17. Ганченко Г.С., Калайдин Е.Н., Чакраборти С., Демехин Е.А. Гидродинамическая неустойчивость при омических режимах в несовершенных электрических мембранах // Доклады Академии наук. 2017. Т. 474. № 3. С. 296–300. https://doi.org/10.7868/s0869565217150063
- 18. Demekhin E.A., Ganchenko G.S., Kalaydin E.N. Transition to electrokinetic instability near imperfect charge-selective membranes // Phys. Fluids. 2018. V. 30. № 8. P. 082006. https://doi.org/10.1063/1.5038960
- 19. Schiffbauer J., Demekhin E., Ganchenko G. Transitions and instabilities in imperfect ion-selective membranes // Int. J. Mol. Sci. 2020. V. 21. № 18. P. 6526. https://doi.org/10.3390/jims21186526
- 20. Филиппов А.Н. Ячеечная модель ионообменной мембраны. Гидродинамическая проницаемость // Коллоидный журнал. 2018. Т. 80. № 6. С. 745–757. https://doi.org/10.1134/S0023291218060034.
- 21. Филиппов А.Н., Шкирская С.А. Верификация ячеечной (гетерогенной) модели ионообменной мембраны и ее сравнение с гомогенной моделью // Коллоидный журнал. 2019. Т. 81. № 5. С. 650–659. https://doi.org/10.1134/s0023291219050045.
- 22. Филиппов А.Н. Ячеечная модель ионообменной мембраны. Электродиффузионный коэффициент и диффузионная проницаемость // Коллоидный журнал. 2021. Т. 83. № 3. С. 360–372. https://doi.org/10.31857/S002329122103006X.
- 23. Филиппов А.Н. Ячеечная модель ионообменной мембраны. Капиллярно-осмотический и обратноосмотический коэффициенты // Коллоидный журнал. 2022. Т. 84. № 3. С. 350–362. https://doi.org/10.31857/S0023291222030053.
- 24. Ганченко Г.С., Шелистов В.С., Ольберг И.И., Моршнева И.В., Демехин Е.А. Моделирование влияния конвективных течений через ионоселективную область на токовые режимы в бинарных растворах электролитов // Коллоидный журнал. 2025. № 4. С. 282–289.
- 25. Филиппов А.Н. Числа переноса противоионов в ячеечной модели заряженной мембраны // Мембраны и мембранные технологии. 2023. Т. 13. № 5. С. 393–401. https://doi.org/10.31857/S2218117223050036
- 26. Shellstov V.S., Demekhin E.A., Ganchenko G.S. Electrokinetic instability near charge-selective hydrophobic surfaces // Phys. Rev. E. 2014. V. 90. № 1. P. 013001. https://doi.org/10.1103/PhysRevE.90.013001
- 27. Demekhin E.A., Shellstov V.S., Polyanskikh S.V. Linear and nonlinear evolution and diffusion layer selection in electrokinetic instability // Phys. Rev. E. 2011. V. 84. № 3. P. 036318. https://doi.org/10.1103/physreve.84.036318
- 28. Demekhin E.A., Nikitin N.V., Shellstov V.S. Direct numerical simulation of electrokinetic instability and transition to chaotic motion // Phys. Fluids. 2013. V. 25. № 12. P. 122001. https://doi.org/10.1063/1.4843095
- 29. Druzgalski C.L., Andersen M.B., Mani, A. Direct numerical simulation of electroconvective instability and hydrodynamic chaos near an ion-selective surface // Physics of Fluids. 2013. V. 25. № 11. P. 110804. https://doi.org/10.1063/1.4818995
- 30. Demekhin E.A., Nikitin N.V., Shellstov V.S. Three-dimensional coherent structures of electrokinetic instability // Phys. Rev. E. 2014. V. 90. № 1. P. 013031. https://doi.org/10.1103/physreve.90.013031
- 31. Шелистов В.С., Демехин Е.А., Ганченко Г.С. Автомодельное решение задачи об электрокинетической неустойчивости в полупроницаемых мембранах // Вестник Московского университета. Серия 1: Математика. Механика. 2014. № 5. С. 62–65.