RAS Chemistry & Material ScienceКоллоидный журнал Colloid Journal

  • ISSN (Print) 0023-2912
  • ISSN (Online) 3034-543X

A STUDY OF ELECTROCONVECTION DURING UNIFORM ELECTROLYTE SOLUTION FLOW THROUGH AN ION-SELECTIVE AREA

PII
S3034543X25040034-1
DOI
10.7868/S3034543X25040034
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 87 / Issue number 4
Pages
289-298
Abstract
The results of a theoretical investigation of electroconvection emergence and development near an ion-selective area under a uniform electrolyte solution flow through this area are presented in the paper. The linear stability analysis of a stationary solution has allowed obtaining the dependence of the critical electric potential difference (that triggers electrokinetic instability) on the external flow rate. Two-dimensional numerical simulation has revealed the peculiarities of nonlinear electroconvection regimes. The research has proven the stabilizing effect of the external flow: electroconvection occurs at larger potential differences, whereas its regimes change each other faster with increasing the potential difference. Understanding these effects is useful in applications like the development of analyte preconcentration systems in microlaboratories for chemical analysis of biological liquids.
Keywords
электрокинетика ионообменная мембрана концентрационная поляризация численное моделирование электрокинетическая неустойчивость электроконвекция лаборатория на чипе
Date of publication
29.04.2025
Year of publication
2025
Number of purchasers
0
Views
31

References

  1. 1. Wang Y.-C., Stevens A.L., Han J. Million-fold preconcentration of proteins and peptides by nanofluidic filter // Anal. Chem. 2005. V. 77. № 14. P. 4293–4299. https://doi.org/10.1021/ac050321z
  2. 2. Wang S.-C., Wei H.-H., Chen H.-P., Tsai M.-H., Yu C.-C., Chang H.-C. Dynamic superconcentration at critical-point double-layer gates of conducting nanoporous granules due to asymmetric tangential fluxes // Biomicrofluidics. 2008. V. 2. № 1. P. 014102. https://doi.org/10.1063/1.2904640
  3. 3. Ouyang W., Ye X., Li Z., Han J. Deciphering ion concentration polarization-based electrokinetic molecular concentration at the micro-nanofluidic interface: theoretical limits and scaling laws // Nanoscale. 2018. V. 10. № 32. P. 15187–15194. https://doi.org/10.1039/c8m02170h
  4. 4. Ouyang W., Han J. Universal amplification-free molecular diagnostics by billion-fold hierarchical nanofluidic concentration // Proc. Natl. Acad. Sci. 2019. V. 116. № 33. P. 16240–16249. https://doi.org/10.1073/pnas.1904513116
  5. 5. Rubinstein I., Shulman L. Voltage against current curves of cation-exchange membranes // J. Chem. Soc., Faraday Trans. 2. 1979. V. 75. P. 231–246. https://doi.org/10.1039/f29797500231
  6. 6. Rubinstein I., Zaltzman B. Electro-osmotically induced convection at a permeslective membrane // Phys. Rev. E. 2000. V. 62. № 2. P. 2238–2251. https://doi.org/10.1103/physreve.62.2238
  7. 7. Nikonenko V.V., Pismenskaya N.D., Belova E.I., Sistat P., Huguet P., Pourcelly G., Larchet C. Intensive current transfer in membrane systems: Modelling, mechanisms and application in electrodialysis // Adv. Colloid Interface Sci. 2010. V. 160. № 1–2. P. 101–123. https://doi.org/10.1016/j.cis.2010.08.001
  8. 8. Шеменов В.С., Никитин Н.В., Ганченко Г.С., Демехин Е.А. Численное моделирование электрокинетической неустойчивости в полупроницаемых мембранах // Доклады Российской академии наук. 2011. Т. 440. № 5. С. 625–630.
  9. 9. Левич В.Г. Физико-химическая гидродинамика. М.: Физматгиз, 1959.
  10. 10. Chen Q., Liu X., Lei Y., Zhu H. An electrokinetic pre-concentration trapping pattern in electromembrane microfluidics // Phys. Fluids. 2022. V. 34. № 9. P. 092009. https://doi.org/10.1063/5.0109394
  11. 11. Butykski D.Yu., Pismenskaya N.D., Apel P.Yu., Sabbatovsky K.G., Nikonenko V.V. Highly selective separation of singly charged cations by countercurrent electromigration with a track-etched membrane // J. Membr. Sci. 2021. V. 635. P. 119449. https://doi.org/10.1016/j.memsci.2021.119449
  12. 12. Chang H.-C., Yossifon G., Demekhin E.A. Nanoscale electrokinetics and microvortices: How microhydrodynamics affects nanofluidic ion flux // Annu. Rev. Fluid Mech. 2012. V. 44. № 1. P. 401–426. https://doi.org/10.1146/annurev-fluid-120710-101046
  13. 13. Berzina B., Anand R.K. Tutorial review: Enrichment and separation of neutral and charged species by ion concentration polarization focusing // Anal. Chim. Acta. 2020. V. 1128. P. 149–173. https://doi.org/10.1016/j.aca.2020.06.021
  14. 14. Sarapulova V.V., Pasechnaya E.L., Titorova V.D., Pismenskaya N.D., Apel P.Yu., Nikonenko V.V. Electrochemical properties of ultrafiltration and nanofiltration membranes in solutions of sodium and calcium chloride // Membr. Membr. Technol. 2020. V. 2. № 5. P. 332–350. https://doi.org/10.1134/s2517751620050066
  15. 15. Butykski D., Troitsky V., Chupynina D., Danmak L., Larchet C., Nikonenko V. Application of hybrid electrobaromembrane process for selective recovery of lithium from cobalt- and nickel-containing leaching solutions // Membranes. 2023. V. 13. № 5. P. 509. https://doi.org/10.3390/membranes13050509
  16. 16. Rubinstein I., Zaltzman B. Equilibrium electroconvective instability // Phys. Rev. Lett. 2015. V. 114. № 11. P. 114502. https://doi.org/10.1103/physrevlett.114.114502
  17. 17. Ганченко Г.С., Калайдин Е.Н., Чакраборти С., Демехин Е.А. Гидродинамическая неустойчивость при омических режимах в несовершенных электрических мембранах // Доклады Академии наук. 2017. Т. 474. № 3. С. 296–300. https://doi.org/10.7868/s0869565217150063
  18. 18. Demekhin E.A., Ganchenko G.S., Kalaydin E.N. Transition to electrokinetic instability near imperfect charge-selective membranes // Phys. Fluids. 2018. V. 30. № 8. P. 082006. https://doi.org/10.1063/1.5038960
  19. 19. Schiffbauer J., Demekhin E., Ganchenko G. Transitions and instabilities in imperfect ion-selective membranes // Int. J. Mol. Sci. 2020. V. 21. № 18. P. 6526. https://doi.org/10.3390/jims21186526
  20. 20. Филиппов А.Н. Ячеечная модель ионообменной мембраны. Гидродинамическая проницаемость // Коллоидный журнал. 2018. Т. 80. № 6. С. 745–757. https://doi.org/10.1134/S0023291218060034.
  21. 21. Филиппов А.Н., Шкирская С.А. Верификация ячеечной (гетерогенной) модели ионообменной мембраны и ее сравнение с гомогенной моделью // Коллоидный журнал. 2019. Т. 81. № 5. С. 650–659. https://doi.org/10.1134/s0023291219050045.
  22. 22. Филиппов А.Н. Ячеечная модель ионообменной мембраны. Электродиффузионный коэффициент и диффузионная проницаемость // Коллоидный журнал. 2021. Т. 83. № 3. С. 360–372. https://doi.org/10.31857/S002329122103006X.
  23. 23. Филиппов А.Н. Ячеечная модель ионообменной мембраны. Капиллярно-осмотический и обратноосмотический коэффициенты // Коллоидный журнал. 2022. Т. 84. № 3. С. 350–362. https://doi.org/10.31857/S0023291222030053.
  24. 24. Ганченко Г.С., Шелистов В.С., Ольберг И.И., Моршнева И.В., Демехин Е.А. Моделирование влияния конвективных течений через ионоселективную область на токовые режимы в бинарных растворах электролитов // Коллоидный журнал. 2025. № 4. С. 282–289.
  25. 25. Филиппов А.Н. Числа переноса противоионов в ячеечной модели заряженной мембраны // Мембраны и мембранные технологии. 2023. Т. 13. № 5. С. 393–401. https://doi.org/10.31857/S2218117223050036
  26. 26. Shellstov V.S., Demekhin E.A., Ganchenko G.S. Electrokinetic instability near charge-selective hydrophobic surfaces // Phys. Rev. E. 2014. V. 90. № 1. P. 013001. https://doi.org/10.1103/PhysRevE.90.013001
  27. 27. Demekhin E.A., Shellstov V.S., Polyanskikh S.V. Linear and nonlinear evolution and diffusion layer selection in electrokinetic instability // Phys. Rev. E. 2011. V. 84. № 3. P. 036318. https://doi.org/10.1103/physreve.84.036318
  28. 28. Demekhin E.A., Nikitin N.V., Shellstov V.S. Direct numerical simulation of electrokinetic instability and transition to chaotic motion // Phys. Fluids. 2013. V. 25. № 12. P. 122001. https://doi.org/10.1063/1.4843095
  29. 29. Druzgalski C.L., Andersen M.B., Mani, A. Direct numerical simulation of electroconvective instability and hydrodynamic chaos near an ion-selective surface // Physics of Fluids. 2013. V. 25. № 11. P. 110804. https://doi.org/10.1063/1.4818995
  30. 30. Demekhin E.A., Nikitin N.V., Shellstov V.S. Three-dimensional coherent structures of electrokinetic instability // Phys. Rev. E. 2014. V. 90. № 1. P. 013031. https://doi.org/10.1103/physreve.90.013031
  31. 31. Шелистов В.С., Демехин Е.А., Ганченко Г.С. Автомодельное решение задачи об электрокинетической неустойчивости в полупроницаемых мембранах // Вестник Московского университета. Серия 1: Математика. Механика. 2014. № 5. С. 62–65.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library