- PII
- S3034543X25040021-1
- DOI
- 10.7868/S3034543X25040021
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 87 / Issue number 4
- Pages
- 281-288
- Abstract
- The paper presents the results of numerical simulations of a cell containing an ion-selective area in a one-dimensional statement. The mathematical model takes into account non-ideal selectivity of the ion-exchange area, and the presence of a convective electrolyte solution flow through it. The flow has been proven to influence the eventual selectivity of the ion-exchange area; the electric current through the system can both increase and decrease depending on the resulting current regime: underlimiting or limiting. The understanding of this effect will be useful in applications, including analyte preconcentration systems in microlaboratories for chemical analysis of biological liquids and electrobaromembrane separation systems for metal ions.
- Keywords
- электрокинетика ионообменная мембрана электросмос концентрационная поляризация численное моделирование электромембранная ячейка лаборатория на чипе
- Date of publication
- 21.04.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 31
References
- 1. Kumar S., Maniya N., Wang C., Senapati S., Chang H.-C. Quantifying PON1 on HDL with nanoparticle-gated electrokinetic membrane sensor for accurate cardiovascular risk assessment // Nat. Commun. 2023. V. 14. № 1. P. 557. https://doi.org/10.1038/s41467-023-36258-w
- 2. Жуков М.Ю., Юдович В.И. Математическая модель изотхофореза // Доклады Академии наук СССР. 1982. Т. 267. № 2. С. 334–338.
- 3. Ramachandran A., Santiago J.G. Isotachophoresis: theory and microfluidic applications // Chem. Rev. 2022. V. 122. № 15. P. 12904–12976. https://doi.org/10.1021/acs.chemrev.1c00640
- 4. Wang Y.-C., Stevens A.L., Han J. Million-fold preconcentration of proteins and peptides by nanofluidic filter // Anal. Chem. 2005. V. 77. № 14. P. 4293–4299. https://doi.org/10.1021/ac050321z
- 5. Wang S.-C., Wei H.-H., Chen H.-P., Tsai M.-H., Yu C.-C., Chang H.-C. Dynamic superconcentration at critical-point double-layer gates of conducting nanoporous granules due to asymmetric tangential fluxes // Biomicrofluidics. 2008. V. 2. № 1. P. 014102. https://doi.org/10.1063/1.2904640
- 6. Berzina B., Anand R.K. Tutorial review: Enrichment and separation of neutral and charged species by ion concentration polarization focusing // Anal. Chim. Acta. 2020. V. 1128. P. 149–173. https://doi.org/10.1016/j.aca.2020.06.021
- 7. Ouyang W., Ye X., Li Z., Han J. Deciphering ion concentration polarization-based electrokinetic molecular concentration at the micro-nanofluidic interface: theoretical limits and scaling laws // Nanoscale. 2018. V. 10. № 32. P. 15187–15194. https://doi.org/10.1039/c8m02170h
- 8. Sarapulova V.V., Pasechnaya E.L., Titorova V.D., Pismenskaya N.D., Apel P.Yu., Nikonenko V.V. Electrochemical properties of ultrafiltration and nanofiltration membranes in solutions of sodium and calcium chloride // Membr. Membr. Technol. 2020. V. 2. № 5. P. 332–350. https://doi.org/10.1134/s2517751620050066
- 9. Butykskii D., Troitskiy V., Chuprynina D., Damnuk L., Larchet C., Nikonenko V. Application of hybrid electrobaromembrane process for selective recovery of lithium from cobalt- and nickel-containing leaching solutions // Membranes. 2023. V. 13. № 5. P. 509. https://doi.org/10.3390/membranes13050509
- 10. Ryzhkov I.I., Lebedev D.V., Solodovnichenko V.S., Shiverskiy A.V., Simunin M.M. Induced-charge enhancement of the diffusion potential in membranes with polarizable nanopores // Phys. Rev. Lett. 2017. V. 119. № 22. P. 226001. https://doi.org/10.1103/physrevlett.119.226001
- 11. Rubinstein I., Shilman L. Voltage against current curves of cation-exchange membranes // J. Chem. Soc., Faraday Trans. 1979. V. 75. P. 231–246. https://doi.org/10.1039/f29797500231
- 12. Ganchenko G.S., Kalaydin E.N., Schiffbauer J., Demekhin E.A. Modes of electrokinetic instability for imperfect electric membranes // Phys. Rev. E. 2016. V. 94. № 6. P. 063106. https://doi.org/10.1103/physreve.94.063106
- 13. Ганченко Г.С., Калайдин Е.Н., Чакраборти С., Демехин Е.А. Гидродинамическая неустойчивость при омических режимах в несовершенных электрических мембранах // Доклады Академии наук. 2017. Т. 474. № 3. C. 296–300. https://doi.org/10.7868/s0869565217150063
- 14. Demekhin E.A., Ganchenko G.S., Kalaydin E.N. Transition to electrokinetic instability near imperfect charge-selective membranes // Phys. Fluids. 2018. V. 30. № 8. P. 082006. https://doi.org/10.1063/1.5038960
- 15. Schiffbauer J., Demekhin E., Ganchenko G. Transitions and instabilities in imperfect ion-selective membranes // Int. J. Mol. Sci. 2020. V. 21. № 18. P. 6526. https://doi.org/10.3390/jms21186526
- 16. Филиппов А.Н. Ячеечная модель ионообменной мембраны. Гидродинамическая проницаемость // Коллоидный журнал. 2018. Т. 80. № 6. C. 745–757. https://doi.org/10.1134/S0023291218060034
- 17. Филиппов А.Н., Шкирская С.А. Верификация ячеечной (гетерогенной) модели ионообменной мембраны и ее сравнение с гомогенной моделью // Коллоидный журнал. 2019. Т. 81. № 5. C. 650–659. https://doi.org/10.1134/s0023291219050045
- 18. Филиппов А.Н. Ячеечная модель ионообменной мембраны. Электродиффузионный коэффициент и диффузионная проницаемость // Коллоидный журнал. 2021. Т. 83. № 3. C. 360–372. https://doi.org/10.31857/S00232912103006X
- 19. Филиппов А.Н. Ячеечная модель ионообменной мембраны. Капиллярно-осмотический и обратноеологический коэффициенты // Коллоидный журнал. 2022. Т. 84. № 3. C. 350–362. https://doi.org/10.31857/S0023291222030053
- 20. Filippov A.V. Control of electrolyte filtration through a charged porous layer (membrane) using a combination of pressure drop and an external electric field // Colloids Interfaces. 2022. V. 6. № 2. P. 34. https://doi.org/10.3390/colloids6020034
- 21. Rubinstein I., Zaltzman B. Electro-osmotically induced convection at a permselective membrane // Phys. Rev. E. 2000. V. 62. № 2. P. 2238–2251. https://doi.org/10.1103/physreve.62.2238
- 22. Шеменов В.С., Никитин Н.В., Ганченко Г.С., Демехин Е.А. Численное моделирование электрокинетической неустойчивости в полупроницаемых мембранах // Доклады Российской академии наук. 2011. Т. 440. № 5. C. 625–630.
- 23. Apel P., Bondarenko M., Yamauchi Yu., Yaroshchuk A. Osmotic pressure and diffusion of ions in charged nanopores // Langmuir. 2021. V. 37. № 48. P. 14089–14095. https://doi.org/10.1021/acs.langmuir.1c02267
- 24. Филиппов А.Н. Числа переноса противомонов в ячеечной модели заряженной мембраны // Мембраны и мембранные технологии. 2023. Т. 13. № 5. C. 393–401. https://doi.org/10.31857/S2218117223050036