ОХНМКоллоидный журнал Colloid Journal

  • ISSN (Print) 0023-2912
  • ISSN (Online) 3034-543X

Реология структурированных жидкостей. Режимы течения и реологические уравнения

Код статьи
S0023291225010053-1
DOI
10.31857/S0023291225010053
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 87 / Номер выпуска 1
Страницы
41-52
Аннотация
Представлена система реологических уравнений, полученная на основе структурно-кинетических представлений, которая описывает вязкие и упругие свойства структурированных жидкостей, а именно, концентрированных суспензий, эмульсий, мицеллярных растворов, растворов и расплавов полимеров. Уравнения структурной модели справедливы для равновесного стационарного течения и для равновесного осциллирующего течения. Уравнения пригодны для аппроксимации реологических кривых , , , на отдельных интервалах скорости сдвига или частоты колебаний. Каждому такому интервалу соответствует определенное состояние структуры. В качестве примера приведены результаты аппроксимации кривых сдвиговой вязкости для полимерного раствора, мицеллярного раствора и эмульсии.
Ключевые слова
реологические уравнения структурная реологическая модель равновесное стационарное течение равновесное осциллирующее течение
Дата публикации
18.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
5

Библиография

  1. 1. Виноградов Г.В., Малкин А.Я. Реология полимеров. М.: Химия, 1977. 440 C.
  2. 2. Hunter R.J. Rheology of colloidal dispersions. Oxford University Press. 1989. P. 993–1052.
  3. 3. Barnes H.A., Hutton J.F., Walters K. An introduction to rheology. Amsterdam: Elsevier. 1989. 199 P.
  4. 4. Barnes H.A. A Handbook of elementary rheology. Aberystwyth: University of Wales. 2000. 201 P.
  5. 5. Шрамм Г. Основы практической реологии и реометрии / пер. с англ. под ред. В. Г. Куличихина. Москва: КолосС. 2003. 312 C.
  6. 6. Малкин А.Я., Исаев А.И. Реология: концепции, методы, приложения / пер. с англ. Санкт-Петербург: Профессия. 2007. 560 C.
  7. 7. Larson R. G. The structure and rheology of complex fluids. New York, Oxford: Oxford University Press. 1999. 668 P.
  8. 8. Кирсанов Е.А. Течение дисперсных и жидкокристаллических систем. Иваново: Изд.-во «Ивановский государственный университет». 2006. 232 C.
  9. 9. Кирсанов Е. А., Матвеенко В. Н. Неньютоновское течение дисперсных, полимерных и жидкокристаллических систем. Структурный подход. Москва: Техносфера. 2016. 384 C.
  10. 10. Casson N. A flow equation for pigment-oil suspensions of the printing ink type // Rheology of disperse systems / ed. Mill C.C. London: Pergamon Press. 1959. P. 84–104.
  11. 11. Cross M. Rheology of non-newtonian fluids: a new flow equation for pseudoplastic systems // J. Colloid Sci. 1965. V. 20. P. 417–437.
  12. 12. Матвеенко В.Н., Кирсанов Е.А. Структурное обоснование неньютоновского течения // Вестник Московского университета. Серия 2. Химия. 2017. Т. 58. № 2. С. 59–82.
  13. 13. Матвеенко В. Н., Кирсанов Е. А. Структурная вязкость и структурная упругость полимерных расплавов // Журн. прикл. химии. 2018. Т. 91. № 5. С. 72–748.
  14. 14. Матвеенко В. Н., Кирсанов Е. А. Структурная модель вязкоупругости полимеров // Вестник Московского университета. Серия 2. Химия. 2019. Т. 60. № 4. С. 207–225.
  15. 15. Матвеенко В.Н., Кирсанов Е.А. Реология расплава полидиметилсилоксана. Структурный подход // Вестник Московского университета. Серия 2. Химия. 2022. Т. 63. № 2. С.55–68.
  16. 16. Матвеенко В.Н., Кирсанов Е.А. Нормальные напряжения в реологии структурированных систем // Вестник Московского университета. Серия 2. Химия. 2022. Т. 63. № 3. С. 187–204.
  17. 17. Левинский А.И. К реологии тиксотропных и реопексных суспензий // Колл. Журнал. 2023. Т. 85. № 6. С. 762–767. https://doi.org/10.31857/S0023291223600591
  18. 18. Yufei Wei. Investigating and modeling the rheology and flow instabilities of thixotropic yield stress fluids. A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemical Engineering). University of Michigan. 2019. 139 P.
  19. 19. Ebagninin K. W., Benchabane A., Bekkour K. Rheological characterization of poly(ethylene oxide) solutions of different molecular weights // J. Colloid Interface Sci. 2009. V. 336. № 1. P. 360–367. https://doi.org/10.1016/j.jcis.2009.03.01
  20. 20. Cressely R., Hartmann V. Rheological behaviour and shear thickening exhibited by aqueous CTAB micellar solutions // Eur. Phys. J. B. 1998. V. 6. P. 57–62. https://doi.org/10.1007/s100510050526
  21. 21. Rajinder Pal. New generalized viscosity model for non-colloidal suspensions and emulsions // Fluids. 2020. V. 5. № 3. 150. P. 1–28. https://doi.org/10.3390/fluids5030150
  22. 22. Mehdi Maleki, Clément de Loubens, Hugues Bodiguel. Viscous resuspension of droplets // Phys. Rev. Fluid. 2022. V. 7. № 1. P. L011602. https://doi.org/10.1103/PhysRevFluids.7.L011602
  23. 23. Федоров Ю. И., Михайлов А. С. Применение обобщенного уравнения течения для высоконаполненных полимерных систем // Вестник технологического университета. 2020. Т. 23. № 8. С. 90–93.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека