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Антибактериальные покрытия находят применение в пищевой и текстильной промышленно-
сти, в строительной отрасли, биотехнологии и медицине. В обзоре рассмотрены основные виды 
покрытий, которые предотвращают обрастание биомакромолекулами и микроорганизмами: ан-
тиадгезивные, контактные, на основе релиза, многофункциональные и интеллектуальные («ум-
ные») покрытия. Для каждого вида покрытия описаны наиболее актуальные и эффективные 
действующие вещества и механизм их действия. Несмотря на широкое распространение анти-
адгезионных поверхностей и покрытий контактного типа, они имеют множество недостатков, 
которые ограничивают сферы их применения и снижают активность и долговечность. Много-
численные исследования показывают, что многофункциональные и интеллектуальные покрытия 
имеют высокий потенциал для практического применения и дальнейших исследований по их 
модификации для получения универсальных и экономически выгодных покрытий. Основной 
проблемой практического применения таких поверхностей является несовершенство методов 
оценки стабильности и антибактериальных свойств покрытия в лабораторных условиях. 
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ВВЕДЕНИЕ

Первоначальная роль поверхностных покрытий 
в промышленном применении заключалась в обеспе-
чении защиты от коррозии и механической стойкости 
материалов [1]. В последнее время большой интерес 
представляет разработка поверхностей, которые сни-
жают адгезию микробов и обеспечивают биоцидную 
активность или проявляют комбинированные эф-
фекты [2–5]. Антимикробные покрытия представ-
ляют собой материалы и вещества, которые модифи-
цируют поверхность другого материала, и придают им 
функции, ограничивающие или предотвращающие 
рост и размножение микроорганизмов без изме-
нения характеристик самого материала [6, 7]. Для 
создания таких покрытий используют различные 
физические и химические методы, обеспечивающие 
формирование однородных слоев. Чтобы покры-
тия были эффективными, они должны включать 

в себя активные соединения, обладающие широким 
спектром антимикробной активности, в том числе 
к антибиотикорезистентным микроорганизмам [8].

Устойчивость бактерий к антибиотикам явля-
ется одной из важнейших проблем современной 
медицины. Бактериальные штаммы могут моди-
фицировать мишени действия антибиотика, ин-
гибировать проникновение и активное выведение 
антибиотика из микробной клетки (эффлюкс), 
формировать метаболические «шунты», вырабаты-
вать ферменты, разрушающие противомикробные 
препараты [9, 10]. Особенно тревожным фактором 
является повсеместное распространение штаммов 
бактерий с множественной устойчивостью к про-
тивомикробным средствам, а также способность 
микроорганизмов к формированию биопленок [11]. 
Бактериальные биопленки представляют собой сово-
купность бактерий в самосекретируемой полимерной 
матрице. Они формируются как на биологических, 
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так и на небиологических поверхностях и являются 
важным этапом возникновения персистирующих 
инфекций. В составе биопленки микробы обладают 
повышенной устойчивостью к факторам иммунной 
системы, антибиотикам и дезинфектантам [12]. Ма-
трикс бактериальных биопленок замедляет диффузию 
антибиотиков, а изменение химической микросреды 
внутри биопленки приводит к образованию пер-
систирующих форм бактерий, которые обладают 
повышенной устойчивостью к противомикробным 
препаратам [13, 14]. Поэтому для борьбы с анти-
биотикорезистентностью необходим поиск новых 
антибактериальных средств, которые были бы эффек-
тивны в отношении изолированных бактериальных 
штаммов и бактериальных сообществ, формирующих 
биопленки.

Разработка и создание покрытий с антимикроб-
ными свойствами имеют большое практическое зна-
чение и находят применение в различных сферах [15–
17]. Так, системы упаковки пищевых продуктов, 
содержащие противомикробные препараты, можно 
использовать не только для уменьшения количества 
патогенов, но и для борьбы с микроорганизмами, 
вызывающими порчу продуктов питания [18]. Такая 
упаковка изолирует пищу от окружающей среды 
и подавляет рост микроорганизмов, не влияя на ее 
состав [19]. Благодаря медленному и/или контролиру-
емому высвобождению антибактериальных агентов, 
обеспечивается их ингибирование при транспор-
тировке и хранении, что увеличивает срок годно-
сти продуктов [20, 21]. В медицинских учреждениях 
антимикробные покрытия применяют в качестве 
современного гигиенического метода борьбы с бак-
териальным загрязнением [22–24]. Существующие 
в настоящее время покрытия против бактериального 
обрастания и загрязнения способны: контролиро-
вать популяцию патогенов на поверхности и мини-
мизировать риски возникновения резистентности 
к входящим в их состав противомикробным препа-
ратам; быть стабильными и (эко)токсикологически 
безопасными; доступными и легко реализуемыми 
в больничных условиях [25–27]. Последние достиже-
ния в области архитектоники наноматериалов при-
вели к появлению антибактериальных наночастиц, 
которые могут быть полезны в текстильной промыш-
ленности, с целью повышения антибактериальных 
свойств тканей, контроля распространения патоген-
ных бактерий и связанных с ними инфекций среди 
людей, а также безопасных для здоровья человека 
и окружающей среды. Такие наночастицы внедряют 
на поверхность ткани при помощи плазменной тех-
ники, лазерной обработки, катионизации, а также 
путем их функционализации или модификации по-
верхности текстиля. Более того, в ткань внедряют 
биосенсорные наночастицы для мониторинга бо-
лезненных состояний человека [28–30]. Антими-
кробные свойства материалов применяются при 
строительстве учреждений, где требуются высокие 

стандарты гигиены для предотвращения образования 
бактериальных биопленок, плесени и грибка, а также 
для защиты сооружений от биодеградации [31, 32]. 
Антибактериальные агенты вводятся путем нанесения 
краски или покрытия на готовую поверхность после 
строительства, путем смешивания неорганических 
добавок (металлические наночастицы, оксиды метал-
лов) с бетоном или раствором во время строительства 
и путем смешивания антимикробных агентов при из-
готовлении строительных материалов [33]. Создание 
защитного слоя в виде краски или покрытия, кото-
рый проявляет активность против широкого спектра 
микроорганизмов и стабилен в широком диапазоне 
pH, является более востребованным в строительной 
сфере [34–36].

Таким образом, современные антибактериальные 
покрытия в медицинской и пищевой промышлен-
ности должны соответствовать таким критериям, 
как эффективность, безопасность и долговечность. 
В обзоре рассмотрены основные виды существующих 
антибактериальных покрытий, механизмы действия 
покрытий и их составных компонентов. Проведена 
оценка преимуществ и недостатков для дальней-
шего проектирования будущих противомикробных 
материалов.

ВИДЫ АНТИБАКТЕРИАЛЬНЫХ ПОКРЫТИЙ

За последние два десятилетия внимание ученых 
и производителей биомедицинской продукции было 
сосредоточено на разработке покрытий, способ-
ных противостоять бактериальной колонизации, 
которые можно было бы наносить на различные 
поверхности и устройства [37, 38]. Антибактериаль-
ные покрытия (рис. 1) в зависимости от механизма 
их действия подразделяются на противомикробные 
покрытия контактного типа [39–41] и покрытия 
на основе релиза, антиадгезивные противомикроб-
ные покрытия [42–45], многофункциональные по-
крытия  [46–48] и интеллектуальные противоми-
кробные покрытия [49–51].

Более ранние конструкции антибактериальных 
покрытий по стратегии предотвращения бактери-
альной адгезии и последующего образования био-
пленок были в основном монофункциональными. 
Они основывались на антибактериальном эффекте, 
инактивирующем микроорганизмы, при контакте 
с поверхностью или препятствовали их прикрепле-
нию [52, 53]. Первыми в этой области были покрытия 
с оксидом меди, мышьяком, оксидом ртути и про-
изводными органоолова, которые предотвращали 
биообрастание морских судов [54, 55]. С 1906 года 
начались разработки антикоррозионных и проти-
вообрастающих красок для морских судов на ос-
нове оксида цинка и ртути [56]. В 1954 г. G.J.M. Der 
Van Kerk и J.G.A. Luijten показали биоцидные свой-
ства оловоорганических соединений [57], которые 
в дальнейшем получили широкое распространение 
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в качестве эффективных противообрастающих по-
крытий. В 1995 г. были разработаны полиуретановые 
пленки, содержащие четвертичные аммониевые со-
единения, демонстрирующие высокую биоцидную 
активность против Escherichia coli [58], и полимерные 
покрытия, модифицированные нитратом серебра, 
которые проявляли антибактериальный эффект в от-
ношении Staphylococcus epidermidis [59]. Lowe A.B. и др. 
в 2000 г. описали статистический сополимер бутила-
крилата с сульфобетаинами, который при адсорбции 
на пластиковых дисках снижал адгезию Pseudomonas 
aeruginosa, макрофагов и фибробластов [60].

Современные покрытия против бактериального 
загрязнения и обрастания сосредоточены на синер-
гическом сочетании антибактериального и антиад-
гезионного эффектов в форме многофункциональ-
ных, интеллектуальных покрытий или межфазных 
материалов [61]. Первый пример интеллектуального 
покрытия, состоящего из производных цвиттер-ион-
ных полимеров, которые могут быстро переключать 
свои химические структуры и обладают антибакте-
риальными, антиадгезивными свойствами и спо-
собностью к самоочищению, был описан Cheng G. 
и др., 2008 г. [62]. В дальнейшем методом интерфе-
рометрической литографии и поверхностной поли-
меризации были получены наноструктурированные 
покрытия, состоящие из термочувствительного поли- 
N‑изопропилакриламида и четвертичной аммоние-
вой соли, которые в ответ на изменения температуры 
обладают биоцидными свойствами и способностью 
к высвобождению инактивированных бактерий [63]. 
В 2018 г. методом последовательного осаждения слоя 
золотых наночастиц и пленки лизоцима с фазовым 
переходом была изготовлена гибридная пленка, кото-
рая под воздействием лазерного излучения в ближнем 

инфракрасном диапазоне обладала бактерицидной 
активностью, а погружение ее в витамин С способ-
ствовало удалению убитых бактерий и регенерации 
поверхности [64]. В последние годы при разработке 
различных покрытий активно внедряются методы 
машинного обучения. В 2021 г. был разработан ме-
тод машинного обучения (с использованием модели 
искусственной нейронной сети и модели на основе 
регрессии опорных векторов), с помощью кото-
рого были синтезированы новые антиадгезивные 
полимерные щетки, которые продемонстрировали 
превосходную устойчивость к адсорбции белка при 
оптимальной толщине пленки [65].

Антибактериальные покрытия 
контактного типа и покрытия на основе 

релиза антибактериальных веществ

Бактерицидные покрытия обеспечивают надеж-
ный и простой способ предотвратить образование 
биопленки, оказывая биоцидное воздействие на бак-
терии, прикрепленные к поверхности или находя-
щиеся во взвешенном состоянии вблизи поверхно-
сти [5]. Они основаны на введении антибактери-
альных агентов в материал или на его поверхность, 
которые посредством постепенного высвобождения 
агентов (рис. 2б) или контактного действия (рис.  2а) 
инактивируют, повреждают или препятствуют росту 
бактерий [66, 61]. Различные биоциды фиксиру-
ются на поверхности методом погружения покрытия 
в антимикробное вещество, распыления и центри-
фугирования, а также используя технику послой-
ного нанесения или модификацию поверхности 
различными полимерами [52]. Контактные покрытия 
можно разделить на неорганические и органические. 

Рис. 1. Классификация основных видов антибактериальных покрытий.
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Неорганические антимикробные покрытия пред-
ставлены наночастицами металлов и их оксидов (Ag, 
Au, Zn, Mg и Cu) [67] и антибиотиками (аминогли-
козиды, хинолоны, пенициллины, гликопептиды, 
тетрациклины, рифамицины) [68]. Органические 
антимикробные покрытия, представлены четвертич-
ными аммониевыми солями (ЧАС) [69] и природ-
ными органическими веществами (антимикробные 
пептиды (АМП), ферменты и полисахариды (хито-
зан)) [70–72]. Наночастицы металлов и их оксидов 
являются эффективным антибактериальным агентом, 
поскольку могут проникать в бактериальные клетки 
через ионные каналы и запускать реакцию Фентона 
с образованием избыточных активных форм кис-
лорода, повышать проницаемость бактериальной 
клеточной стенки и окислительный стресс в орга-
низме бактериальной клетки; могут образовывать 
вторичные токсичные метаболиты, влияя на метабо-
лическую активность бактерий; вызывать изменения 
в генетической информации бактерий (например, 
16S рДНК) [73]. Покрытия, высвобождающие анти-
биотики, способны доставлять их непосредственно 
к месту действия, что обеспечивает более высокую 
эффективность и позволяет избежать введения ан-
тибиотиков в высокой дозе, системную токсичность 
и развитие лекарственной устойчивости [74]. Ан-
тибиотики способны ингибировать синтез белка 
бактериальной клетки, репликацию и транскрип-
цию ДНК, воздействуя на ДНК‑топоизомеразы II 
и IV или путем связывания с РНК‑полимеразой, 
нарушать синтез пептидогликана клеточной стенки 
посредством ферментативного ингибирования или 
связываясь с аминокислотами [75, 76]. Многообеща-
ющим кандидатом на замену обычным антибиотикам 
считают АМП (рис. 2в) из-за их широкого спектра 
и неспецифического антибактериального механизма 
действия [77]. Они прикрепляются к поверхности 
бактериальной клеточной мембраны, что приводит 
к образованию различных форм повреждения мем-
бран; препятствуют синтезу ДНК и РНК и ингиби-
руют активность ферментов, вызывая гибель бак-
терий. Кроме того, AMП проявляют превосходную 
антибиопленочную активность. Катионные молекулы 
(например, ЧАС) могут эффективно убивать бакте-
рии благодаря контактному эффекту уничтожения 
[78]. Они могут сначала адсорбироваться на стенке 
бактериальной клетки посредством электростати-
ческого действия, а затем диффундировать внутрь, 
нарушая потенциал мембраны, что приводит к по-
вреждению мембраны, утечке цитоплазмы и гибели 
бактерий [73]. Хитозан и его производные проявляют 
антибактериальную активность в отношении грибов, 
грамположительных и грамотрицательных бактерий. 
Антибактериальная активность этого полимера может 
быть связана с взаимодействием аминогрупп хито-
зана с электроотрицательными зарядами поверх-
ности бактериальной клетки, что приводит к утечке 
внутриклеточных компонентов [79]. Кроме того, он 

обладает биоразлагаемостью, биосовместимостью, 
полиморфизмом и сорбционными свойствами [80]. 
Антибактериальные ферменты способны напрямую 
атаковать микроорганизм, препятствовать образова-
нию биопленки, разрушать биопленку и/или ката-
лизировать реакции, которые приводят к выработке 
противомикробных соединений [81]. Поверхности 
на основе релиза проявляют свою антибактериальную 
активность при высвобождении антибактериаль-
ных агентов методом диффузии, эрозии, деградации 
или гидролиза ковалентных связей в окружающую 
среду [82]. Соединения высвобождаются с поверх-
ности материала, и антибактериальная активность 
происходит локально, только там, где это необхо-
димо. В зависимости от антибактериального агента, 
включенного в матрицу, покрытия на основе релиза 
способны высвобождать антибиотики (пенициллин, 
хлортетрациклин, стрептомицин, ванкомицин), ионы 
и оксиды металлов (Ag, Zn и Cu) и неметаллические 
материалы фтор (F) [83, 84, 27]. В качестве носителя 
в таких поверхностях используют полиметакрило-
вую кислоту, полиакриловую кислоту, сополимеры 
на основе молочной и гликолевой кислот, гидрокси-
апатит, полиуретан, гиалуроновую кислоту, хитозан 
и керамические наночастицы. Поверхности на ос-
нове высвобождения антибактериальных веществ 
получают путем пропитывания пористого материала 
или покрытия желаемым антибактериальным соеди-
нением, методом послойного нанесения или плаз-
менного напыления полиэлекторлитов [85, 86, 52].

Основным недостатком таких покрытий явля-
ются ограниченные запасы антибактериальных 
агентов, которые делают покрытия непригодными 
после их истощения, а также токсичность некоторых 
антибактериальных веществ (ЧАС, наночастицы 
и ионы металлов). Наночастицы проникают в клетки 
и впоследствии оказывают токсическое воздействие 
на внутриклеточные структуры. Они вызывают по-
вреждение митохондрий, окислительный стресс и ау-
тофагию [87, 88], а в высоких концентрациях – некроз 
и апоптоз клеток [89]. Оксиды металлов (ZnO, MgO, 
CuO) также обладают цитотоксичностью и вызывают 
апоптоз, аутофагию, окислительный стресс и не-
кроз [90]. Накопление инактивированных бактерий 
и внутриклеточных компонентов не только снижает 
эффективность покрытия, но и может способствовать 
образованию биопленок [61] и вызывать иммунные 
реакции или воспаление. Кроме того, большинство 
биоцидных агентов заряжены положительно и могут 
электростатически взаимодействовать с белками. 
Более того, в основе разных биоцидных методов 
лежат разные механизмы уничтожения, и каждый 
метод эффективен для определенного типа бактерий. 
С появлением бактериальных штаммов с множе-
ственной лекарственной устойчивостью, подходы, 
использующие единый механизм уничтожения, ста-
новятся менее эффективными [5]. Так, например, 
материалы на основе серебра обладают сильным 
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Рис. 2. а – Схематическое изображение механизма действия антибактериальных покрытий контактного типа; б – 
схематическое изображение механизма действия антибактериальных покрытий на основе релиза; в – изображения 
жизнеспособных клеток (зеленые) и мертвых бактерий (красные) S. sanguinis, L. salivarius и зубного налета, полу-
ченные с помощью конфокальной микроскопии с 20-кратным увеличением объектива через 4 недели инкубации 
при 37°C: 1 – на титановой поверхности, 2 – на титановой поверхности с электроосаждением серебра, 3 – на ти-
тановой поверхности, покрытой силаном триэтоксисилилпропилянтарным ангидридом, с иммобилизованнным 
пептидом hLf1–11. Воспроизведено из работы [39], с разрешения Американского химического общества, 2015 г.
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бактерицидным действием, однако их активность 
со временем снижается, поскольку покрытия по-
стоянно выделяют биоцидный агент. В случае по-
крытий на основе поликатионных полимеров может 
потребоваться обработка поверхности катионным 
поверхностно-активным веществом для восстанов-
ления антимикробной активности. Низкомолеку-
лярные бактерицидные средства часто вызывают 
резистентность и со временем постепенно теряют 
свою эффективность [91].

Антиадгезионные противомикробные покрытия

Поверхностные характеристики материалов, 
включая поверхностный заряд, свободную энер-
гию, морфологию, смачиваемость и т. д., оказывают 
важное влияние на бактериальную адгезию [92]. 
Бактерии могут прикрепляться к различным поверх-
ностям и образовывать биопленки посредством не-
специфических взаимодействий, таких как водород-
ные связи, электростатические силы, гидрофобные 
взаимодействия и силы Ван-дер-Ваальса (рис. 3а). 
Таким образом, бактериальная адгезия на поверх-
ности имплантированных устройств способствует 
возникновению девайс-ассоциированных инфекций 
и является основной причиной разработки анти-
адгезионных покрытий [93]. Чтобы предотвратить 
развитие биопленок на поверхностях биоматериалов, 
поверхность должна быть способна предотвращать 
начальную адгезию бактерий [22]. Антиадгезион-
ные покрытия – это функциональные покрытия, 
созданные посредством модификации поверхности 
материалов, с изменением их физико-химических 
свойств (шероховатость, степень смачиваемости, за-
ряд и т. д.), что препятствует адгезии бактерий, грибов 
и белков (рис. 3б) [94]. Действие таких покрытий ос-
новано на стерическом, электростатическом и супер-
гидрофобном эффектах, которые можно наблюдать 
на гидрофильных, супергидрофильных, заряженных 
и супергидрофобных поверхностях, соответственно 
(рис. 3в) [52]. Гидрофильные поверхности препят-
ствуют прикреплению клеток и бактерий за счет 
того, что они покрыты слоем молекул воды, тесно 
связанного водородными связями с гидрофильным 
материалом, и играют роль физического и энергети-
ческого барьера, который необходимо преодолеть для 
адсорбции. Гидрофильные полимеры также могут 
в некоторой степени ингибировать прикрепление 
бактерий, однако высокие противообрастающие 
свойства приобретаются только тогда, когда стериче-
ское отталкивание дополняет поверхностную гидра-
тацию [95]. Так, высокогидратированные полимеры, 
такие как полиэтиленгликоль (ПЭГ), нейтральные 
и гидрофильные полимеры поли-2-алкил‑2-оксазо-
лин продемонстрировали способность снижать бак-
териальную и белковую адгезию за счет стерических 
препятствий [96, 97]. Гидрофильные покрытия полу-
чают методом физической, химической адсорбции, 

прямым ковалентным присоединением и блочной 
или привитой сополимеризацией [98]. Лазерная об-
работка покрытий на основе металлов, обладающих 
антибактериальными свойствами, позволяет получать 
супергидрофильные покрытия. В зоне воздействия 
лазерного луча поверхность нагревается и проис-
ходит плавление, сублимация и взрывная абляция 
материала. При этом частицы металла удаляются 
с поверхности и впоследствии осаждаются, формируя 
микрорельеф вокруг зоны воздействия в виде микро- 
и наночастиц. Благодаря высокой смачиваемости 
супергидрофильных покрытий увеличивается пло-
щадь контакта и ионы металлов из образовавшихся 
наночастиц более эффективно переносятся в жид-
кость, вызывая окислительный стресс бактериальных 
клеток. Кроме того, формирование иерархической 
пористости поверхности приводит к гибели бактерий 
в результате перфорации и деформации мембраны 
элементами нанотекстуры и потери внутриклеточной 
жидкости [99–101]. По сравнению с гидрофильными 
полимерами, взаимодействие связанной воды по-
средством ионного сольватирования сильнее, чем 
слой воды с водородными связями, что усиливает 
противообрастающую природу цвиттер-ионных 
поверхностей [102]. Поверхности, функционализи-
рованные цвиттер-ионными полимерами, которые 
в своей структуре имеют равномерное распределе-
ние анионных и катионных групп вдоль их основ-
ной цепи, демонстрируют противообрастающие 
свойства. К ним относятся полиметакрилоилокси-
этилфосфорилхолин, полисульфобетаинметакрилат 
и полисульфобетаинакриламид, поскольку они со-
держат, с одной стороны, катионную четвертичную 
аммониевую соль, а с другой стороны, анионные 
карбоксилатные, фосфатные и сульфатные группы 
соответственно [103]. Помимо эффекта стерического 
препятствия этого гидратационного слоя, катионные 
группы также могут убивать бактерии при контакте. 
Кроме того, функционализированные цвиттер-ион-
ными полимерами поверхности более универсальны 
и стабильны независимо от температуры и концен-
трации соли, чем функционализация ПЭГ. В связи 
с чем эти полимеры широко используются в качестве 
антибактериальных покрытий [104]. Супергидро-
фобные поверхности привлекли большое внимание 
своими превосходными свойствами самоочищения 
и возможностью применения в различных отраслях 
промышленности [105]. Угол контакта с водой таких 
поверхностей превышает 150°, и, следовательно, их 
трудно смачивать. Супергидрофобность снижает силу 
адгезии между бактериями и поверхностью и облег-
чает удаление первоначально прилипших бактерий 
до образования биопленки [106, 52, 22]. Такое явле-
ние объясняется двумя физическими принципами: 
низкой поверхностной энергией и шероховатыми 
структурами в микроскопическом масштабе. Хи-
мия и топография поверхности являются основ-
ными факторами, которые мешают взаимодействию 
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на границе раздела жидкость-твердое тело. Поверх-
ностная энергия влияет на адгезию веществ к границе 
раздела, включая жидкости и микроорганизмы. Низ-
кая поверхностная энергия снижает работу адгезии 
и, следовательно, увеличивает гидрофобность [107]. 
Супергидрофобные поверхности достигаются путем 
подготовки микро/наноструктур и их последующей 
пассивации молекулами с низкой поверхностной 
энергией [7]. Методы получения супергидрофобных 
противообрастающих покрытий включают химическое 
и физическое травление, метод погружения, золь-гель 
метод, химическое осаждение из паровой фазы, фото-
литографию, центрифугирование, электропрядение, 
послойное осаждение и/или их комбинацию [108]. 

Однако превосходную долговечность функциональ-
ных свойств для таких поверхностей демонстрирует 
метод лазерного текстурирования [109, 110].

Противообрастающие покрытия только предотвра-
щают адгезию бактерий, а не устраняют их (рис. 3г). 
Поэтому со временем происходит увеличение концен-
трации планктонных бактерий в субстрате, что спо-
собствует бактериальной обсемененности и приводит 
к возникновению инфекций. Кроме того, гидрофиль-
ные полимеры могут постепенно нейтрализоваться, 
пассивироваться или разлагаться другими соедине-
ниями, такими как белки, соли и амфифилы. Любые 
локальные дефекты супергидрофобных покрытий могут 

Рис. 3. а – электронная микрофоторгафия 7-дневной биопленки S. aureus на поверхности без покрытия; б – элек-
тронная микрофоторгафия покрытия из полидодецилметакрилат-полиэтиленгликоль метакрилат-акриловой кис-
лоты, препятствующей образованию биопленки из S. aureus в течение 7 дней. Воспроизведено из работы [43], с раз-
решения Американского химического общества, 2017 г.; в – схематические изображения антиадгезионных покрытий. 
(1) – гидрофильные полимеры, (2) – цвиттерионные покрытия, (3) – супергидрофобные покрытия, угол контакта 
с водой более 150°, как у листа лотоса. Воспроизведено из работы [93], с разрешения 2020 John Wiley & Sons, Inc.;  
г – схематическое изображение механизма действия антиадгезионного покрытия.
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выступать в качестве мест локальной адгезии для бак-
терий с последующим формированием биопленок.

Многофункциональные антимикробные покрытия

Достижения в области антибактериальных и про-
тивообрастающих покрытий обеспечили основу для 
разработки многофункциональных покрытий [111–
113]. Они представляют собой класс противомикроб-
ных материалов, которые помимо инактивации бак-
терий обладают дополнительными возможностями, 
такими как долговременная активность, стабиль-
ность и возможность восстановления. Различные 
исследования показали, что такие покрытия могут 
уменьшить количество бактерий на поверхности 
более чем на 99% по сравнению с поверхностью без 
покрытия  [114–116]. Механизм действия многофунк-
циональных антибактериальных покрытий (рис.  4а) 
включает: антибиообрастание, бактерицидность 
и удаление мертвых и/или живых прикрепленных 
бактерий. Таким образом, поверхность может проти-
востоять или предотвращать первоначальную адгезию 
и распространение бактерий за счет стерического 
и электростатического отталкивания или за счет 
сниженной поверхностной энергии, а если бакте-
рии вступают в контакт или частично прикрепля-
ются к ней, бактерицидные добавки, содержащиеся 
в покрытиях, уничтожают их (рис. 4б, в) [117, 118]. 
В зависимости от метода, используемого для вклю-
чения антибактериальных агентов в антиадгезион-
ные материалы, такие поверхности можно разделить 
на три категории: связанные с гидрофильными по-
лимерами, послойно нанесенные или сохраненные 
в необрастающей матрице и высвобождающиеся 
из нее. В качестве антибактериальных агентов могут 

быть использованы природные и синтетические 
химические вещества, такие как соединения ЧАС, 
противомикробные ферменты, АМП, хитозан и бак-
териофаги [119]. Такие покрытия получают методом 
последовательного нанесения слоев, химической мо-
дификации, плазменным осаждением, ковалентным 
связыванием, методом конъюгации, иммобилизации 
и прививочной полимеризации [120].

Несмотря на высокую эффективность многофунк-
циональных покрытий, остается много нерешенных 
проблем в практике их применения и изготовления. 
Бактерицидные агенты, входящие в состав таких по-
крытий, имеют недостатки, связанные со стабильно-
стью при хранении, долгосрочной эффективностью, 
биосовместимостью, стоимостью и трудоемкостью 
внедрения их в состав покрытия. Кроме того, доста-
точно сложно подобрать материалы для разработки 
покрытия, которые проявляют хорошую биоцидную 
активность, свойства устойчивости к бактериям 
и удалению погибших бактерий. При применении 
многофункциональных покрытий на медицинских 
устройствах необходимо учитывать их состав, по-
скольку не всегда материалы, сочетающие в себе ан-
тибактериальные и антиадгезивные свойства, могут 
быть универсальным средством борьбы с бактери-
альными инфекциями. Например, использование 
антиадгезивных материалов недопустимо при из-
готовлении ортопедических и зубных имплантатов, 
поскольку поверхности должны подавлять бактери-
альную колонизацию и одновременно способствовать 
адгезии остеобластов [121]. При этом применение 
антиадгезивных материалов при изготовлении много-
функциональных покрытий для мочевых и внутрисо-
судистых катетеров усиливают бактерицидные свой-
ства поверхности, т. к.  не требуют особых условий 

Рис. 4. а – схематическое изображение механизма действия многофункционального антибактериального покры-
тия; б – антибактериальная активность хлопчатобумажной ткани без покрытия и с покрытием, содержащим по-
лиэтиленимин, фитиновую кислоту, ион железа (Fe3+) и диметилоктадецил [3-триметоксисилил-пропил] хлорид 
аммония в отношении E. coli и St. aureus соответственно; в – оптические изображения капель воды, помещенных 
на хлопчатобумажные ткани без покрытия и с многофункциональным покрытием соответственно. Воспроизведено 
из работы [48], с разрешения Elsevier B.V., 2022 г.

(a) ( )б ( )в
E. coli S. aureus

CA = 155 2� �

CA ~ 0�
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помимо антибактериальных свойств [122]. Более 
того, для практического применения изготовление 
поверхностей должно быть простым, недорогим 
и воспроизводимым. Для объектов, контактирую-
щих с морской водой, необходимо, чтобы поверхно-
сти демонстрировали повышенную коррозионную 
стойкость и долговечность, а также стойкость к об-
растанию различными организмами, которые могут 
колонизировать любые подводные поверхности [123]. 
Следует отметить, что для биомедицинских при-
менений необходимо в первую очередь определить 

токсические эффекты антибактериальных поверх-
ностей и улучшить их биосовместимость [124].

Интеллектуальные антимикробные покрытия

В последние годы были разработаны интеллек-
туальные антибактериальные покрытия, которые 
сочетают антиадгезационные, бактерицидные и са-
моочищающиеся функции и реализуют контроли-
руемое высвобождение антибактериальных агентов 
с помощью физических и химических подходов, тем 
самым достигая длительного воздействия, уменьшая 

Рис. 5. а – схематическое изображение механизма действия интеллектуального антибактериального покрытия; б – 
электронные микрофотографии E. coli и S. aureus, культивируемых с углеродными капсулами, модифицирован-
ными полиэтиленгликолем и легированными азотом с облучением лазером 808 нм и без него. Воспроизведено 
из работы [138], с разрешения Американского химического общества, 2018 г.; в – изображения жизнеспособных 
клеток (зеленые) и мертвых бактерий (красные) S. aureus, полученные с помощью конфокальной микроскопии 
3D‑нанопористой поверхности без покрытия, 3D‑нанопористой поверхности с покрытием дубильной кислотой, 
3D‑нанопористой поверхности с покрытием дубильной кислотой и гентамицина соотвественно. Воспроизведено 
из работы [129], с разрешения Американского химического общества, 2015 г.
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потенциальные побочные эффекты (рис. 5а). Та-
ким образом, интеллектуальные антибактериаль-
ные покрытия считаются наиболее оптимальными 
из всех существующих покрытий. Их можно раз-
делить на эндогенно- и экзогенно-реагирующие 
типы [125]. Эндогенно-чувствительные покрытия 
в первую очередь включают реакцию на pH и бак-
териальные секреции. Первое в основном стиму-
лируется посредством подкисления среды бактери-
альной инфекцией [126], тогда как последнее отно-
сится к реакции на различные ферменты (такие как 
фосфолипаза, гиалуронидаза, холестеринэстераза 
и металлопротеаза) или токсины, секретируемые 
в ходе метаболического процесса [127, 128]. Обычные 
чувствительные к pH покрытия получают методом 
электростатических взаимодействий. Например, 
покрытия, содержащие отрицательно заряженные 
молекулы и положительно заряженные антибиотики, 
получают методом послойной самосборки [129–132], 
или для синтеза используют кислотно-чувствитель-
ные основания Шиффа [133, 134], координационные 
связи металлов [135] и эфиры борной кислоты [136, 
137]. Кроме того, покрытия, чувствительные к pH, 
могут быть получены на основе реактивного свя-
зывания между наночастицами и лекарственными 
средствами, а также чувствительных молекул, таких 
как полиметакриловая кислота [138]. Экзогенно-сти-
мулированные покрытия проявляют антибактериаль-
ную активность при стимуляции внешних условий. 
Такие покрытия могут решить проблемы плохой 
стабильности, неконтролируемого высвобождения 
лекарств и появления бактериальной резистентно-
сти. К экзогенно-чувствительным покрытиям от-
носятся поверхности, реагирующие на изменение 
температуры, светочувствительные поверхности, 
которые активируются под действием света, и био-
электрические поверхности, активирующиеся под 
действием внешнего электрического поля [139–141]. 
Такие покрытия получают методом ковалентной 
связи, процессом осаждения из паровой фазы, на-
несением многослойных пленок или гидрогелевых 
покрытий, содержащих чувствительные к ферментам 
компоненты, посредством фотополимеризации или 
сочетанием нескольких методов [127].

Анализ проведенных исследований указывает 
на большой потенциал интеллектуальных антибакте-
риальных покрытий для практического применения, 
однако существует много возможностей для совер-
шенствования текущих методов покрытия, чтобы 
сделать их более эффективными, универсальными 
и экономически выгодными. Перспективным в этом 
направлении будет создание интеллектуальных по-
крытий, которые обладают способностью активи-
ровать биоцидную активность в ответ на изменение 
определенных биологических микросред, а также 
усовершенствование их стабильности, долговечности 
и снижение цитотоксичности [142].

ЗАКЛЮЧЕНИЕ

В последние десятилетия проводят активные ис-
следования в области усовершенствования антибак-
териальных покрытий и придания им новых свойств, 
таких как возможность регенерации и очищения 
от погибших бактерий. Кроме того, комбинация 
нескольких антибактериальных агентов или сочета-
ние различных видов антибактериальных покрытий 
улучшают их эффективность и долговечность. Так, 
например, в многофункциональных материалах, где 
в покрытия включено более одной стратегии защиты 
(супергидрофобная и антиадгезивная), происходит 
более эффективное предотвращение бактериальной 
адгезии, а если в составе имеются высвобождаемые 
антимикробные вещества, то при контакте с ними 
микробные клетки будут инактивироваться. Кроме 
того, снижается потребность и использование ан-
тибактериального агента, и срок службы такого по-
крытия может быть значительно выше, чем у ан-
тибактериальных поверхностей контактного типа. 
Интеллектуальные покрытия, созданные на основе 
активизации антибактериальных агентов в ответ 
на изменение факторов окружающей среды, делают 
поверхности еще более эффективными долговеч-
ными, экологичными и востребованными. Таким 
образом, дальнейшие исследования антибактери-
альных покрытий следующего поколения должны 
быть посвящены поиску новых и расширению су-
ществующих механизмов действия против бактерий 
и разработке дополнительных путей их активации, 
а также получению поверхностей, обладающих мно-
жественными интегрированными функциями.

Область разработки антимикробных и проти-
вообрастающих поверхностей является много- 
обещающей, и потенциал для большого и быстрого 
воздействия за счет внедрения разработанных тех-
нологий очевиден. Большое количество описанных 
в литературе разработок и исследований в области 
создания антибактериальных покрытий не доходят 
до практического применения и даже до клинических 
исследований. Это связано с тем, что в лабораторных 
условиях для тестирования антибактериальных ма-
териалов сложно создавать условия, происходящие 
в живых организмах. Использование искусствен-
ного интеллекта и цифровых инструментов могут 
помочь решить эти проблемы. Так, аналитические 
инструменты помогают быстро и точно обрабатывать, 
и анализировать огромные объемы данных, а искус-
ственный интеллект, анализируя химическую струк-
туру покрытий, помогает определять токсичность 
материалов и подбирать соединения для включения 
их в состав, экономя время, ресурсы и минимизируя 
риски неблагоприятных последствий при проведении 
клинических испытаний.
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SURFACE MODIFIERS FOR REDUCING BACTERIAL 
CONTAMINATION IN MEDICINE AND FOOD INDUSTRY

Yu. V. Cherednichenko, I. R. Ishmukhametov, G. I. Fakhrullina

Antibacterial coatings are used in the food and textile industries, in the construction industry, in 
biotechnology and medicine. The review considers the main types of coatings that prevent fouling with 
biomacromolecules and microorganisms: anti-adhesive, contact, release-based, multifunctional and 
intelligent (“smart”) coatings. For each type of coating, the most relevant and effective active substances 
and their mechanism of action are described. Despite the widespread use of anti-adhesive surfaces and 
contact coatings, they have many disadvantages that limit the scope of their application and reduce 
activity and durability. Numerous studies show that multifunctional and intelligent coatings have high 
potential for practical application and further research on their modification to obtain universal and cost-
effective coatings. The main problem of the practical application of such surfaces is the imperfection of 
methods for assessing the stability and antibacterial properties of the coating in laboratory conditions.

Keywords: аntibacterial coatings, contact, release-based, anti-adhesive, multifunctional, intelligent
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