RAS Chemistry & Material ScienceКоллоидный журнал Colloid Journal

  • ISSN (Print) 0023-2912
  • ISSN (Online) 3034-543X

Determination of the limits for quantification of the degree of internalization of γ-Fe2O3 nanoparticles by cultures of human mesenchymal stromal cells

PII
10.31857/S0023291224060023-1
DOI
10.31857/S0023291224060023
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 86 / Issue number 6
Pages
687-699
Abstract
A culture of human bone marrow mesenchymal stromal cells (MSCs) was investigated in the present work. Cell culture was grown as a monolayer in a nutrient medium into which a stabilized aqueous suspension of magnetic nanoparticles (MNPs) of maghemite (γ-Fe2O3) were added. MNPs were synthesized by the electrophysical method of laser target evaporation. A method has been proposed for stabilizing a suspension in a nutrient medium with high ionic strength. A qualitative assessment of the possibility of internalization (either by fixing on the cell membrane or by penetrating into the cell space) of MNPs with human MSCs was carried out using optical, scanning and transmission electron microscopy and SQUID magnetometry. Comparative analysis of the structure and magnetic properties was made, and assumptions about the features of MNP internalization in this system were provided. It has been established that the limiting value for MNPs that can reliably be analyzed in a biological sample of the type under consideration with nanoparticles of this type is of about 0.005 mg. It was found that in the considered range of initial concentrations of magnetic nanoparticles in biological samples based on human MSCs, the level of accumulation of magnetic nanoparticles in cell cultures depends on their concentration.
Keywords
метод лазерного испарения мишени магнитные наночастицы маггемит стабилизированные водные суспензии мезенхимальные стромальные клетки человека просвечивающая электронная микроскопия магнитные измерения
Date of publication
15.11.2024
Year of publication
2024
Number of purchasers
0
Views
37

References

  1. 1. Pankhurst Q.A., Connolly A.J., Jones S.K., Dobson J. Applications of magnetic nanoparticles in biomedicine // J. Phys. D. 2003. V. 36. № 13. P. R167. https://doi.org/10.1088/0022-3727/36/13/201
  2. 2. Фролов Г.И., Бачина О.И., Завьялова М.М., Равочкин С.И. Магнитные свойства наночастиц и Зd-металлов // Журнал Технической Физики. 2008. Т. 78. № 8. С. 101–106
  3. 3. Курляндская Г.В., Сафронов А.П., Щербинин С.В., Бекетов И.В., Бляхман Ф.А., Макарова Э.Б., Корч М.А., Свалов А.В. Магнитные наночастицы, полученные электрофизическими методами: фокус на биомедицинские приложения // Физика твердого тела. 2021. Т. 63. № 9. C. 1290–1304.https://doi.org/10.21883/FTT.2021.09.51255.17H
  4. 4. Камзин А.С. Мессбауэровские исследования магнитных наночастиц Fe и Fe 3 O 4 для гипертермических применений // Физика тв. тела. 2016. Т. 58. № 3. С. 519–525.
  5. 5. Geilich B.M., Gelfat I., Sridhar S., van de Ven A.L., Webster T.J. Superparamagnetic iron oxide-encapsulating polymersome nanocarriers for biofilm eradication // Biomaterials. 2017. V. 119. P. 78–85. https://doi.org/10.1016/j.biomaterials.2016.12.011
  6. 6. Khawja Ansari S.A.M., Ficiara E., Ruffinatti F.A., Stura I., Argenziano M., Abollino O., Cavalli R., Guiot C., D’Agata F.. Magnetic Iron oxide nanoparticles: synthesis, characterization and functionalization for biomedical applications in the central nervous system // Materials. 2019. V. 12. № 3. P. 465. https://doi.org/10.3390/ma12030465
  7. 7. Dvorak H.F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing // N. Engl. J. Med. 1986. V. 315, P. 1650–1659. https://doi.org/10.1056/nejm198612253152606
  8. 8. Grossman J.H., McNeil S.E. Nanotechnology in Cancer Medicine // Phys. Today. 2012. V. 65. № 8. P. 38–42.https://doi.org/10.1063/PT.3.1678
  9. 9. Kurlyandskaya G.V., Litvinova L.S., Safronov A.P., Schupletsova V.V., Tyukova I.S., Khaziakhmatova O.G., Slepchenko G.B., Yurova K.A., Cherempey E.G., Kulesh N.A., Andrade R., Beketov I.V., Khlusov I.A. Water-based suspensions of iron oxide nanoparticles with electrostatic or steric stabilization by chitosan: fabrication, characterization and biocompatibility // Sensors. 2017. V. 17. № 11. P. 2605. https://doi.org/10.3390/s17112605
  10. 10. Beketov I.V., Safronov A.P., Medvedev A.I., Alonso J., Kurlyandskaya G.V., Bhagat S.M. Iron oxide nanoparticles fabricated by electric explosion of wire: focus on magnetic nanofluids // AIP Adv. 2012. V. 2. P. 022154.https://doi.org/10.1063/1.4730405
  11. 11. Kotov Yu.A. Electric explosion of wires as a method for preparation of nanopowders // J. Nanopart. Res. 2003. V. 5. № 5. P. 539–550. https://doi.org/10.1023/B:NANO.0000006069.45073.0b
  12. 12. Melnikov G.Yu., Lepalovskij V.N., Svalov A.V., Safronov A.P., Kurlyandskaya G.V. Magnetoimpedance thin film sensor for detecting of stray fields of magnetic particles in blood vessel // Sensors. 2021. V. 21. P. 3621. https://doi.org/10.3390/s21113621
  13. 13. Prilepskii A.Y., Fakhardo A.F., Drozdov A.S., Vinogradov V.V., Dudanov I.P., Shtil A.A., Bel’tyukov P.P., Shibeko A.M., Koltsova E.M., Nechipurenko D.Y., Vinogradov V.V. Urokinase-conjugated magnetite nanoparticles as a promising drug delivery system for targeted thrombolysis: synthesis and preclinical evaluation // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 36764–36775. https://doi.org/10.1021/acsami.8b14790
  14. 14. Graham L., Orenstein J.M. Processing tissue and cells for transmission electron microscopy in diagnostic pathology and research // Nat. Protoc. 2007. V. 2. P. 2439–2450. https://doi.org/10.1038/nprot.2007.304
  15. 15. Kulesh N.A., Novoselova I.P., Safronov A.P., Beketov I.V., Samatov O.M., Kurlyandskaya G.V., Morozova M., Denisova T.P. Total reflection x-ray fluorescence spectroscopy as a tool for evaluation of iron concentration in ferrofluids and yeast samples // J. Magn. Magn. Mater. 2016. V. 415. P. 39–44. https://doi.org/10.1016/j.jmmm.2016.01.095
  16. 16. Safronov A.P., Beketov I.V., Komogortsev S.V., Kurlyandskaya G.V., Medvedev A.I., Leiman D.V., Larranaga A., Bhagat S.M. Spherical magnetic nanoparticles fabricated by laser target evaporation // AIP Adv. 2013. V. 3. P. 052135. https://doi.org/10.1063/1.4808368
  17. 17. Zborowski M., Chalmers J. Magnetic Cell Separation (Elsevier, 2008), P. 486.
  18. 18. Novoselova I.P., Safronov A.P., Samatov O.M., Beketov I.V., Medvedev A.I., Kurlyandskaya G.V. Water based suspensions of iron oxide obtained by laser target evaporation for biomedical applications // J. Magn. Magn. Mater. 2016. V. 415. P. 35–38. https://doi.org/10.1016/j.jmmm.2016.01.093
  19. 19. Kurlyandskaya G.V., Novoselova Iu.P., Schuplet-sova V.V., Andrade R., Dunec N.A., Litvinova L.S.,Safronov A.P., Yurova K.A., Kulesh N.A., Dzyuman A.N., Khlusov I.A. Nanoparticles for magnetic biosensing systems // Journal of Magnetism and Magnetic Materials. 2017. V. 431. P. 249–254. https://doi.org/101016/j.jmmm.2016.07.056
  20. 20. Safronov A.P., Beketov I.V., Tyukova I.S., Medvedev A.I., Samatov O.M., Murzakaev A.M. Magnetic nanoparticles for biophysical applications synthesized by high-power physical dispersion // J. Magn. Magn. Mat. 2015. V. 383. P. 281–287. https://doi.org/10.1016/j.jmmm.2014.11.016
  21. 21. Tscharnuter W.W. Photon correlation spectroscopy in particle sizing // Encyclopedia of Analytical Chemistry, Ed. by R. A. Meyers (JohnWiley & Sons Ltd., 2001). P. 5469. https://doi.org/10.1002/9780470027318.a1512
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library