ОХНМКоллоидный журнал Colloid Journal

  • ISSN (Print) 0023-2912
  • ISSN (Online) 3034-543X

Микрофлюидный синтез наночастиц магнетита и его сравнение с синтезом в объемном реакторе

Код статьи
10.31857/S0023291224040062-1
DOI
10.31857/S0023291224040062
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 86 / Номер выпуска 4
Страницы
469-481
Аннотация
В работе рассматривается синтез наночастиц магнетита микрофлюидным способом. Были исследованы основные характеристики полученных наночастиц, включая химический состав, распределение по размеру, удельный магнитный момент насыщения и коэрцитивную силу. Для оценки возможности использования наночастиц в медико-биологических целях была рассчитана гемолитическая активность суспензии наночастиц магнетита.
Ключевые слова
оксиды железа магнетит маггемит наночастицы микрофлюидный синтез
Дата публикации
15.07.2024
Год выхода
2024
Всего подписок
0
Всего просмотров
28

Библиография

  1. 1. Park K. Facing the truth about nanotechnology in drug delivery // ACS Nano. 2013. V. 7. № 9. P. 7442–7447. https://doi.org/10.1021/nn404501g
  2. 2. Liu D., Zhang H., Fontana F. et al. Current developments and applications of microfluidic technology toward clinical translation of nanomedicines // Adv. Drug Deliv. Rev. 2018. V. 128. P. 54–83. https://doi.org/10.1016/j.addr.2017.08.003
  3. 3. Juliano R. Nanomedicine: Is the wave cresting? // Nat. Rev. Drug Discov. 2013. V. 12. № 3. P. 171–172. https://doi.org/10.1038/nrd3958
  4. 4. Liu D., Zhang H., Fontana F. et al. Microfluidic-assisted fabrication of carriers for controlled drug delivery // Lab. Chip. 2017. V. 17. № 11. P. 1856–1883. https://doi.org/10.1039/c7lc00242d.
  5. 5. Makarshin L.L., Pai Z.P., Parmon V.N. Microchannel systems for fine organic synthesis // Russ. Chem. Rev. 2016. V. 85. № 2. P. 139–155. https://doi.org/10.1070/RCR4484
  6. 6. Martins J.P., Torrieri G., Santos H.A. The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems // Expert Opin Drug Deliv. 2018. V. 15. № 5. P. 469–479. https://doi.org/10.1080/17425247.2018.1446936
  7. 7. Song Y., Hormes J., Kumar C.S. Microfluidic synthesis of nanomaterials // Small. 2008. V. 4. № 6. P. 698–711. https://doi.org/10.1002/smll.200701029
  8. 8. Gonçalves I.M., Carvalho V., Rodrigues R.O. et al. Organ-on-a-Chip Platforms for Drug Screening and delivery in tumor cells: A systematic review // Cancers. 2022. V. 14. № 4. P. 935. https://doi.org/10.3390/cancers14040935
  9. 9. El-Housiny S., Shams Eldeen M.A., El-Attar Y.A. et al. Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: formulation and clinical study // Drug Deliv. 2018. V. 25. № 1. P. 78–90. https://doi.org/10.1080/10717544.2017.1413444
  10. 10. Millstone J.E., Kavulak D.F., Woo C.H. et al. Synthesis, properties, and electronic applications of size-controlled poly(3-hexylthiophene) nanoparticles // Langmuir. 2010. V. 26. № 16. P. 13056–13061. https://doi.org/10.1021/la1022938
  11. 11. Arroyo G.V., Madrid A.T., Gavilanes A.F. et al. Green synthesis of silver nanoparticles for application in cosmetics // J. Environ. Sci. Health. Part A. 2020. V. 55. № 11. P. 1304–1320. https://doi.org/10.1080/10934529.2020.1790953
  12. 12. Gao Y., Wu Y., Lu H. et al. CsPbBr3 perovskite nanoparticles as additive for environmentally stable perovskite solar cells with 20.46% efficiency // Nano Energy. 2019. V. 59. P. 517–526. https://doi.org/10.1016/j.nanoen.2019.02.070.
  13. 13. Lin Ch.H., Lee G.B, Lin Y.H., Chang G.L. A fast prototyping process for fabrication of microfluidic systems on soda-lime glass // J. Micromech. Microeng. 2000. V. 11. P. 726. https://doi.org/10.1088/0960-1317/11/6/316
  14. 14. van Poll M.L., Zhou F., Ramstedt M. et al. A self-assembly approach to chemical micropatterning of poly(dimethylsiloxane) // Angew. Chem. Int. Ed. 2007. V. 46. № 35. P. 6634–6637. https://doi.org/10.1002/anie.200702286
  15. 15. Berthier E., Young E.W., Beebe D. Engineers are from PDMS-land, Biologists are from Polystyrenia // Lab Chip. 2012. V. 12. № 7. P. 1224–1237. https://doi.org/10.1039/c2lc20982a
  16. 16. Merkel T.C., Bondar V.I., Nagai K. et al. Gas sorption, diffusion, and permeation in poly(dimethylsiloxane) // Journal of Polymer Science Part B. 2000. V. 38. № 3. P. 415–434. https://doi.org/10.1002/ (SICI)1099-0488(20000201) 38:33.0.CO;2-Z
  17. 17. Kuddannaya S., Bao J., Zhang Y. Enhanced in vitro biocompatibility of chemically modified poly(dimethylsiloxane) surfaces for stable adhesion and long-term investigation of brain cerebral cortex cells // ACS Appl. Mater. Interfaces. 2015. V. 7. № 45. P. 25529–25538. https://doi.org/10.1021/acsami.5b09032
  18. 18. Cho H., Lee D., Hong S. et al. Surface modification of ZrO2 nanoparticles with TEOS to prepare transparent ZrO2@SiO2-PDMS nanocomposite films with adjustable refractive indices // Nanomaterials. 2022. V. 12. № 14. P. 2328. https://doi.org/10.3390/nano12142328
  19. 19. Johnston I.D., Tracey M.C., Davis J.B., Tan C. K.L. Micro throttle pump employing displacement amplification in an elastomeric substrate // J. Micromech. Microeng. 2005. V. 15. P. 1831. https://doi.org/10.1088/0960-1317/15/10/007
  20. 20. Dardouri M., Bettencourt A., Martin V. et al. Using plasma-mediated covalent functionalization of rhamnolipids on polydimethylsiloxane towards the antimicrobial improvement of catheter surfaces // Biomater. Adv. 2022. V. 134. P. 112563. https://doi.org/10.1016/j.msec.2021.112563
  21. 21. Kumar R., Kumar Sahani A. Role of superhydrophobic coatings in biomedical applications // Materials Today: Proceedings. 2021. V. 45. P. 5655–5659. https://doi.org/10.1016/j.matpr.2021.02.457
  22. 22. Wu X., Kim S.H., Ji C.H., Allen M.G. A solid hydraulically amplified piezoelectric microvalve // J. Micromech. Microeng. 2011. V. 21. P. 095003. https://doi.org/10.1088/0960-1317/21/9/095003
  23. 23. Bozukova D., Pagnoulle C, Jérôme R, Jérôme C. Polymers in modern ophthalmic implants—Historical background and recent advances // Materials Science and Engineering: R: Reports. 2010. V. 69. № 6. P. 63–83. https://doi.org/10.1016/j.mser.2010.05.002
  24. 24. Chen W., Lam R. H., Fu J. Photolithographic surface micromachining of polydimethylsiloxane (PDMS) // Lab Chip. 2012. V. 12. № 2. P. 391–395. https://doi.org/10.1039/c1lc20721k
  25. 25. Weibel D.B., Diluzio W.R., Whitesides G.M. Microfabrication meets microbiology // Nat. Rev. Microbiol. 2007. V. 5. № 3. P. 209–218. https://doi.org/10.1038/nrmicro1616
  26. 26. Kulkarni M.B., Goel S. Microfluidic devices for synthesizing nanomaterials—A review //Nano Express. 2020. V. 1. № 3. P. 032004. https://doi.org/10.1088/2632-959X/abcca6
  27. 27. Kumar K., Nightingale A.M., Krishnadasan S.H. et al. Direct synthesis of dextran-coated superparamagnetic iron oxide nanoparticles in a capillary-based droplet reactor // J. Mater. Chem. 2012. V. 22. № 11. P. 4704–4708. https://doi.org/10.1039/c2jm30257h
  28. 28. Toropova Y.G., Golovkin A.S., Malashicheva A.B. et al. In vitro toxicity of FemOn, FemOn-SiO2 composite, and SiO2-FemOn core-shell magnetic nanoparticles // Int. J. Nanomedicine. 2017. V. 12. P. 593–603. https://doi.org/10.2147/IJN.S122580
  29. 29. Ivanov S., Trachevskii V., Stolyarova N., Zozulya L.A. Plasmochemical modification of polymer surfaces // Russian Journal of Applied Chemistry. 2006. V. 79. P. 445–447. https://doi.org/10.1134/S1070427206030220
  30. 30. Kim D.N.H., Kim K.T., Kim C. et al. Soft lithography fabrication of index-matched microfluidic devices for reducing artifacts in fluorescence and quantitative phase imaging // Microfluid Nanofluidics. 2018. V. 22. № 1. P. 2. https://doi.org/10.1007/s10404-017-2023-3
  31. 31. Costa P.F., Albers H.J., Linssen J.E.A. et al. Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data // Lab Chip. 2017. V. 17. № 16. P. 2785–2792. https://doi.org/10.1039/c7lc00202e
  32. 32. Prabhakar A., Agrawal M., Mishra N. et al. Cost-effective smart microfluidic device with immobilized silver nanoparticles and embedded UV-light sources for synergistic water disinfection effects // RSC Adv. 2020. V. 10. № 30. P. 17479–17485. https://doi.org/10.1039/d0ra00076k.
  33. 33. Lopez C., Oza G., Casanova-M. J. et al. A Proposal to Develop a Microfluidic Platform with GMR Sensors and the Use of Magnetic Nanoparticles in Order to Detect Cancerous Cells // Preliminary experimentation. 2019 Global Medical Engineering Physics Exchanges/ Pan American Health Care Exchanges (GMEPE/PAHCE). Buenos Aires. Argentina. 2019. P. 1–5. https://doi.org/10.1109/GMEPE-PAHCE.2019.8717341
  34. 34. Kharitonskii P., Kamzin A., Gareev K. et al. Magnetic granulometry and Mössbauer spectroscopy of FemOn–SiO2 colloidal nanoparticles // J. Magn. Magn. Mater. 2018. V. 461. P. 30–36. https://doi.org/10.1016/j.jmmm.2018.04.044
  35. 35. Kuzmann E., Nagy S., Vértes A. Critical review of analytical applications of Mössbauer spectroscopy illustrated by mineralogical and geological examples (IUPAC Technical Report) // Pure and Applied Chemistry. 2003. V. 75. № 6. P. 801–858. https://doi.org/10.1351/pac200375060801
  36. 36. Суздалев И.П. Электрические и магнитные переходы в нанокластерах и наноструктурах. Москва: URSS: КРАСАНД, 2012. 474 с
  37. 37. Gareev K.G. Diversity of iron oxides: Mechanisms of formation, physical properties and applications // Magnetochemistry. 2023. V. 9. № 5. P. 119. https://doi.org/10.3390/magnetochemistry9050119
  38. 38. Mehta R.V., Upadhyay R.V., Dasannacharya B.A. et al. Magnetic properties of laboratory synthesized magnetic fluid and their temperature dependence // J. Magn. Magn. Mater. 1994. V. 132. № 1–3. P. 153–158. https://doi.org/10.1016/0304-8853 (94)90309-3
  39. 39. Kharitonskii P.V., Gareev K.G., Ionin S.A. et al. Microstructure and magnetic state of Fe3O4-SiO2 colloidal particles // Journal of Magnetics. 2015. V. 20. № 3. P. 221–228. https://doi.org/10.4283/JMAG.2015.20.3.221
  40. 40. Thu V.T., Mai A.N., Van Trung H. et al. Fabrication of PDMS-based microfluidic devices: Application for synthesis of magnetic nanoparticles // Journal of Electronic Materials. 2016. V. 45. P. 2576–2581. https://doi.org/10.1007/s11664-016-4424-6
  41. 41. Bemetz J., Wegemann A., Saatchi K. et al. Microfluidic-Based Synthesis of Magnetic nanoparticles coupled with miniaturized NMR for online relaxation studies // Anal. Chem. 2018. V. 90. № 16. P. 9975–9982. https://doi.org/10.1021/acs.analchem.8b02374
  42. 42. Fuentes O.P., Cruz J.C., Mignard E. et al. Life cycle assessment of magnetite production using microfluidic devices: Moving from the laboratory to industrial scale // ACS Sustainable Chemistry & Engineering. 2023. V. 11. № 18. P. 6932–6943. https://doi.org/10.1021/acssuschemeng.2c06875
  43. 43. Zou L., Huang B., Zheng X. et al. Microfluidic synthesis of magnetic nanoparticles in droplet-based microreactors // Materials Chemistry and Physics. 2021. V. 276. P. 125384. https://doi.org/10.1016/j.matchemphys.2021.125384
  44. 44. Chircov C., Dumitru I.A., Vasile B.S. et al. Microfluidic synthesis of magnetite nanoparticles for the controlled release of antibiotics // Pharmaceutics. 2023. V. 15. № 9. P. 2215. https://doi.org/10.3390/pharmaceutics15092215
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека