- Код статьи
- 10.31857/S0023291223700064-1
- DOI
- 10.31857/S0023291223700064
- Тип публикации
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 85 / Номер выпуска 2
- Страницы
- 244-260
- Аннотация
- Нестабильность эмульсии является основной проблемой для промышленного использования жидкоэмульсионных мембранных процессов. Настоящая работа направлена на исследование процесса извлечения диклофенака из водного раствора с помощью эмульсионных наножидкостных мембран, стабилизированных многостенными углеродными нанотрубками или наночастицами Fe2O3 и SiO2. В исследовании также делается упор на переработку наночастиц и оценивается стабильность и производительность системы эмульсионных наножидкостных мембран. Оптимизация таких параметров, как кратность объема, время эмульгирования и скорость перемешивания, выполнялась с применением метода Бокса–Бенкена, а графики взаимодействия использовались для понимания взаимозависимости между параметрами и их совокупного влияния на степень экстракции диклофенака. Оптимальные значения для максимального извлечения диклофенака наблюдались в следующих областях значений оптимизируемых параметров: скорость перемешивания – 400–500 об./мин, время эмульгирования – 2.5–5 мин, кратность объема – 10–14. Эмульсионные наножидкостные мембраны были охарактеризованы с помощью инфракрасной Фурье-спектроскопии нарушенного полного внутреннего отражения, динамического светорассеяния, микрофотографий и турбидиметрических измерений по технологии Turbiscan. Также была проведена рециркуляция эмульсии для повторного использования наночастиц и мембранной фазы. Анализ переработанных эмульсионных наножидкостных мембран по технологии Turbiscan проводился для проверки стабильности эмульсий после каждого цикла.
- Ключевые слова
- Дата публикации
- 01.03.2023
- Год выхода
- 2023
- Всего подписок
- 0
- Всего просмотров
- 29
Библиография
- 1. Angosto J.M., Roca M.J., Fernandez-Lopez J.A. Removal of diclofenac in wastewater using biosorption and advanced oxidation techniques : comparative results // Water. 2020. V. 12. № 12. P. 3567. https://doi.org/doi:10.3390/w12123567
- 2. Patel M., Kumar R., Kishor K. et al. Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods // Chem Rev. 2019. V. 119. № 6. P. 3510–3673. https://doi.org/10.1021/acs.chemrev.8b00299
- 3. Lara-Perez C., Levya E., Zeremeno B. et al. Photocatalytic degradation of diclofenac sodium salt: adsorption and reaction kinetic studies // Environ. Earth Sci. 2020. V. 79. P. 1–13. https://doi.org/10.1007/s12665-020-09017-z
- 4. Ye X., Li Y., Lin H. et al. Lignin-based magnetic nanoparticle adsorbent for diclofenac sodium removal: adsorption, behavior and mechanisms // J. Polym. Environ. 2021. V. 29. P. 3401–3411. https://doi.org/10.1007/s10924-021-02127-0
- 5. Shakeel F., Haq N., Ahmed M.A. et al. Removal of diclofenac sodium from aqueous solution using water/Transcutol/ethylene glycol/Capryol-90 green nanoemulsions // J. Mol. Liq. 2014. V. 199. P. 102–107. https://doi.org/10.1016/j.molliq.2014.08.030
- 6. Wei H., Deng S., Huang Q. et al. Regenerable granular carbon nanotubes/alumina hybrid adsorbents for diclofenac sodium and carbamazepine removal from aqueous solution // Water Res. 2013. V. 47. № 12. P. 4139–4147. https://doi.org/10.1016/j.watres.2012.11.062
- 7. Oliveira T.D., Guégan R., Thiebault T. et al. Adsorption of diclofenac onto organoclays: effects of surfactant and environmental (pH and temperature) conditions // J. Hazard. Mater. 2017. V. 323. P. 558–566. https://doi.org/10.1016/j.jhazmat.2016.05.001
- 8. Sun K., Shi Y., Chen H., et al. Extending surfactant-modified 2:1 clay minerals for the uptake and removal of diclofenac from water // J. Hazard. Mater. 2017. V. 323. P. 567–574. https://doi.org/10.1016/j.jhazmat.2016.05.038
- 9. De Luna M.G., Murniati, Budianta W. et al. Removal of sodium diclofenac from aqueous solution by adsorbents derived from cocoa pod husks // J. Environ. Chem. Eng. 2017. V. 5. № 2. P. 1465–1474. https://doi.org/10.1016/j.jece.2017.02.018
- 10. Graouer-Bacart M., Sayen S., Guillon E. Adsorption and co-adsorption of diclofenac and Cu(II) on calcareous soils // Ecotoxicol. Environ. Saf. 2016. V. 124. P. 386–392. https://doi.org/10.1016/j.ecoenv.2015.11.010
- 11. Lu X., Shao Y., Gao N. et al. Adsorption and removal of clofibric acid and diclofenac from water with MIEX resin // Chemosphere. 2016. V. 161. P. 400–411. https://doi.org/10.1016/j.chemosphere.2016.07.025
- 12. Larous S., Meniai A.H. Adsorption of Diclofenac from aqueous solution using activated carbon prepared from olive stones // Int. J. Hydrogen Energy. 2016. V. 41. № 24. P. 10380–10390. https://doi.org/10.1016/j.ijhydene.2016.01.096
- 13. Jodeh S., Abdelwahab F., Jaradat N. et al. Adsorption of diclofenac from aqueous solution using Cyclamen persicum tubers based activated carbon (CTAC) // J. Assoc. Arab Univ. Basic Appl. Sci. 2016. V. 20. P. 32–38. https://doi.org/10.1016/j.jaubas.2014.11.002
- 14. Marković M., Daković A., Krajišnik D. et al. Evaluation of the surfactant/phillipsite composites as carriers for diclofenac sodium // J. Mol. Liq. 2016. V. 222. P. 711–716. https://doi.org/10.1016/j.molliq.2016.07.127
- 15. Nam S.W., Jung C., Li H. et al. Adsorption characteristics of diclofenac and sulfamethoxazole to graphene oxide in aqueous solution // Chemosphere. 2015. V. 136. P. 20–26. https://doi.org/10.1016/j.chemosphere.2015.03.061
- 16. Tiwari D., Lalhriatpuia C., Lee S.M. Hybrid materials in the removal of diclofenac sodium from aqueous solutions: batch and column studies // J. Ind. Eng. Chem. 2015. V. 30. P. 167–173. https://doi.org/10.1016/j.jiec.2015.05.018
- 17. Saucier C., Adebayo M.A., Lima E.C. et al. Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents // J. Hazard. Mater. 2015. V. 289. P. 18–27. https://doi.org/10.1016/j.jhazmat.2015.02.026
- 18. Hu X., Cheng Z. Removal of diclofenac from aqueous solution with multi-walled carbon nanotubes modified by nitric acid // Chinese J. Chem. Eng. 2015. V. 23. P. 1551–1556. https://doi.org/10.1016/j.cjche.2015.06.010
- 19. Pereira K.A.A., Osório L.R., Silva M.P. et al. Chemical modification of chitosan in the absence of solvent for diclofenac sodium removal: pH and kinetics studies // Mater Res. 2014. V. 17. P. 141–145. https://doi.org/10.1590/S1516-14392014005000043
- 20. Krajišnik D., Daković A., Malenović A. et al. An investigation of diclofenac sodium release from cetylpyridinium chloride-modified natural zeolite as a pharmaceutical excipient // Microporous Mesoporous Mater. 2013. V. 167. P. 94–101. https://doi.org/10.1016/j.micromeso.2012.03.033
- 21. Krajišnik D., Daković A., Malenović A. et al. Investigation of adsorption and release of diclofenac sodium by modified zeolites composites // Appl. Clay Sci. 2013. V. 83–84. P. 322–326. https://doi.org/10.1016/j.clay.2013.08.011
- 22. Sotelo J.L., Rodríguez A., Álvarez S., García J. Removal of caffeine and diclofenac on activated carbon in fixed bed column // Chem. Eng. Res. Des. 2012. V. 90. № 7. P. 967–974. https://doi.org/10.1016/j.cherd.2011.10.012
- 23. Antunes M., Esteves V.I., Guégan R. et al. Removal of diclofenac sodium from aqueous solution by Isabel grape bagasse // Chem. Eng. J. 2012. V. 192. P. 114–121. https://doi.org/10.1016/j.cej.2012.03.062
- 24. Faria E.R., Ribeiro F.M., Verly R.M. et al. An environmentally friendly electrochemical reactor for the degradation of organic pollutants in the total absence of a liquid electrolyte: a case study using diclofenac as a model pollutant // J. Environ. Chem. Eng. 2017. V. 5. № 4. P. 3873–3881. https://doi.org/10.1016/j.jece.2017.07.056
- 25. Feng L., van Hullebusch E.D., Rodrigo M.A. et al. Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes // Chem. Eng. J. 2013. V. 228. P. 944–964. https://doi.org/10.1016/j.cej.2013.05.061
- 26. Chiron S., Duwig C. Biotic nitrosation of diclofenac in a soil aquifer system (Katari watershed, Bolivia) // Sci. Total Environ. 2016. V. 565. P. 473–480. https://doi.org/10.1016/j.scitotenv.2016.05.048
- 27. Thiruppathi M., Kumar P.S., Devendran P. et al. Ce@TiO2 nanocomposites: an efficient, stable and affordable photocatalyst for the photodegradation of diclofenac sodium // J. Alloys Compd. 2018. V. 735. P. 728–734. https://doi.org/10.1016/j.jallcom.2017.11.139
- 28. Yu H., Nie E., Xu J. et al. Degradation of diclofenac by advanced oxidation and reduction processes: kinetic studies, degradation pathways and toxicity assessments // Water Res. 2013. V. 47. № 5. P. 1909–1918. https://doi.org/10.1016/j.watres.2013.01.016
- 29. Bae S., Kim D., Lee W. Degradation of diclofenac by pyrite catalyzed Fenton oxidation // Appl. Catal. B Environ. 2013. V. 134–135. P. 93–102. https://doi.org/10.1016/j.apcatb.2012.12.031
- 30. Hama Aziz K.H., Miessner H., Mueller S. et al. Degradation of pharmaceutical diclofenac and ibuprofen in aqueous solution, a direct comparison of ozonation, photocatalysis and non-thermal plasma // Chem. Eng. J. 2017. V. 313. P. 1033–1041. https://doi.org/10.1016/j.cej.2016.10.137
- 31. Brillas E., Garcia-Segura S., Skoumal M., Arias C. Electrochemical incineration of diclofenac in neutral aqueous medium by anodic oxidation using Pt and boron-doped diamond anodes // Chemosphere. 2010. V. 79. № 6. P. 605–612. https://doi.org/10.1016/j.chemosphere.2010.03.004
- 32. Sun K., Shi Y., Wang X., Li Z. Sorption and retention of diclofenac on zeolite in the presence of cationic surfactant // J. Hazard. Mater. 2017. V. 323. P. 584–592. https://doi.org/10.1016/j.jhazmat.2016.08.026
- 33. Krajišnik D., Daković A., Milojević M. et al. Properties of diclofenac sodium sorption onto natural zeolite modified with cetylpyridinium chloride // Colloids Surfaces B: Biointerfaces. 2011. V. 83. № 1. P. 165–172. https://doi.org/10.1016/j.colsurfb.2010.11.024
- 34. Gupta S., Khandale P.B., Chakraborty M. Application of emulsion liquid membrane for the extraction of diclofenac and relationship with the stability of water-in-Oil emulsions // J. Dispers. Sci. Technol. 2020. V. 41. № 3. P. 393–401. https://doi.org/10.1080/01932691.2019.1579655
- 35. Kohli H.P., Gupta S., Chakraborty M. Comparative studies on the separation of endocrine disrupting compounds from aquatic environment by emulsion liquid membrane and hollow fiber supported liquid membrane // Int. J. Chem. React. Eng. 2021. V. 19. № 7. P. 689–698. https://doi.org/10.1515/ijcre-2020-0153
- 36. Seifollahi Z., Rahbar-Kelishami A. Diclofenac extraction from aqueous solution by an emulsion liquid membrane: parameter study and optimization using the response surface methodology // J. Mol. Liq. 2017. V. 231. P. 1–10. https://doi.org/10.1016/j.molliq.2017.01.081
- 37. Binks B.P., Whitby C.P. Nanoparticle silica-stabilised oil-in-water emulsions: improving emulsion stability // Colloids Surfaces A: Physicochem. Eng. Asp. 2005. V. 253. № 1–3. P. 105–115. https://doi.org/10.1016/j.colsurfa.2004.10.116
- 38. Binks B.P., Rodrigues J.A. Enhanced stabilization of emulsions due to surfactant-induced nanoparticle flocculation // Langmuir. 2007. V. 23. P. 7436–7439. https://doi.org/10.1021/la700597k
- 39. Salman H.M., Mohammed A.A. Extraction of lead ions from aqueous solution by co-stabilization mechanisms of magnetic Fe2O3 particles and nonionic surfactants in emulsion liquid membrane // Colloids Surfaces A. 2019. V. 568. P. 301–310. https://doi.org/10.1016/j.colsurfa.2019.02.018
- 40. Kohli H.P., Gupta S., Chakraborty M. Stability and performance study of emulsion nanofluid membrane: a combined approach of adsorption and extraction of ethylparaben // Colloids Surfaces A: Physicochem. Eng. Asp. 2019. V. 579. P. 123675. https://doi.org/10.1016/j.colsurfa.2019.123675
- 41. Shirokikh S.A., Klevtsova E.O., Savchenko A.G., Koroleva M.Y. Stability of highly concentrated water-in-oil emulsions with magnetic nanoparticles and the structure of highly porous polymers formed on their basis // Colloid J. 2021. V. 83. № 6. P. 806–815. https://doi.org/10.1134/s1061933x21060120
- 42. Kohli H.P., Gupta S., Chakraborty M. Extraction of ethylparaben by emulsion liquid membrane: statistical analysis of operating parameters // Colloids Surfaces A: Physicochem. Eng. Asp. 2018. V. 539. P. 371–381. https://doi.org/10.1016/j.colsurfa.2017.12.002
- 43. Nandwani S.K., Chakraborty M., Gupta S. Adsorption of surface active ionic liquids on different rock types under high salinity conditions // Sci. Rep. 2019. V. 9. P. 147601. https://doi.org/10.1038/s41598-019-51318-2
- 44. Kohli H.P., Gupta S., Chakraborty M. Statistical analysis of operating variables for pseudo-emulsion hollow fiber strip dispersion technique: ethylparaben separation from aqueous feed stream // Chem. Pap. 2021. V. 75. P. 629–640. https://doi.org/10.1007/s11696-020-01317-9
- 45. Chakraborty M., Bhattacharya C., Datta S. Emulsion Liquid Membranes: Definitions and Classification, Theories, Module Design, Applications, New Directions and Perspectives, Liquid Membranes: Principles and Applications in Chemical Separations and Wastewater Treatment. V.S. Kislik, 1st Ed., Amsterdam, The Netherlands: Elsveir. 2010. P. 141–199. https://doi.org/10.1016/B978-0-444-53218-3.00004-0
- 46. Kumar A., Thakur A., Panesar P.S. A review on emulsion liquid membrane (ELM) for the treatment of various industrial effluent streams // Study Rev. Environ. Sci. Biotechnol. 2019. V. 18. P. 153–182. https://doi.org/10.1007/s11157-019-09492-2
- 47. Ahmad A.L., Zaulkiflee N.D., Kusumastuti A., Buddin M.M.H.S. Removal of acetaminophen from aqueous solution by emulsion liquid membrane: emulsion stability study // Ind. Eng. Chem. Res. 2019. V. 58. P. 713–719. https://doi.org/10.1021/acs.iecr.8b03562
- 48. Kohli H.P., Gupta S., Chakraborty M. Separation of diclofenac using pseudo-emulsion hollow fiber membrane: optimization by Box–Behnken response surface design // J. Water Process Eng. 2019. V. 32. P. 100880. https://doi.org/10.1016/j.jwpe.2019.100880
- 49. Umrigar V.R., Chakraborty M., Parikh P.A., Kohli H.P. Optimization of process parameters for oleic acid esterification using microwave reactor: catalytic activity, product distribution and reactor energy model // Energy Nexus. 2022. V. 7. P. 100127. https://doi.org/10.1016/j.nexus.2022.100127
- 50. Fu X., Kong W., Zhang Y. et al. Novel solid–solid phase change materials with biodegradable trihydroxy surfactants for thermal energy storage // RSC Adv. 2015. V. 5. № 84. P. 68881–68889. https://doi.org/10.1039/c5ra11842e
- 51. Senthilnathan J., Mohan S., Palanivelu K. Recovery of chromium from electroplating wastewater using di 2‑(ethylhexyl) phosphoric acid // Sep. Sci. Technol. 2005. V. 40. P. 2125–2137. https://doi.org/10.1081/SS-200068492
- 52. Chen J.J., Zhang Q., Shi Y.N. et al. A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries // Phys. Chem. Chem. Phys. 2012. V. 14. № 16. P. 5376–5382. https://doi.org/10.1039/c2cp40141j
- 53. Hwang S.W., Umar A., Dar G.N. et al. Synthesis and characterization of iron oxide nanoparticles for phenyl hydrazine sensor applications // Sens. Lett. 2014. V. 12. № 1. P. 97–101. https://doi.org/10.1166/sl.2014.3224
- 54. Saravanan S., Dubey R.S. Synthesis of SiO2 nanoparticles by sol-gel method and their optical and structural properties // Rom. J. Inf. Sci. Technol. 2020. V. 23. № 1. P. 105–112.
- 55. Kruglyakov P., Nushtayeva A. Emulsions stabilized by solid particles: the role of capillary pressure in the emulsion films, in Interface Sci Technol Emulsions, Petsev D.N. (Ed.). Amsterdam: Elsevier, 2004, P. 641–676. https://doi.org/10.1016/S1573-4285 (04)80018-8
- 56. Shirasangi R., Kohli H.P., Gupta S., Chakraborty M. Separation of methylparaben by emulsion liquid membrane: optimization, characterization, stability and multiple cycles studies // Colloids Surfaces A: Physicochem Eng. Asp. 2020. V. 597. P. 124761. https://doi.org/10.1016/j.colsurfa.2020.124761
- 57. Kohli H.P., Gupta S., Chakraborty M. Characterization and stability study of pseudo-emulsion hollow fiber membrane: separation of ethylparaben // Colloids Surfaces A. 2020. V. 587. P. 24308. https://doi.org/10.1016/j.colsurfa.2019.124308
- 58. Fu W., Zhang W. Measurement of the surface hydrophobicity of engineered nanoparticles using an atomic force microscope // Phys. Chem. Chem. Phys. 2018. V. 20. № 37. P. 24434.https://doi.org/10.1039/C8CP04676J
- 59. Lin Z., Zhang Z., Li Y., Deng Y. Recyclable magnetic-Pickering emulsion liquid membrane for extracting phenol compounds from wastewater // J. Mater. Sci. 2016. V. 51. P. 6370–6378. https://doi.org/10.1007/s10853-016-9933-4