ОХНМКоллоидный журнал Colloid Journal

  • ISSN (Print) 0023-2912
  • ISSN (Online) 3034-543X

Улавливание субмикронных аэрозольных частиц фильтрами из нановолокон

Код статьи
10.31857/S0023291222600316-1
DOI
10.31857/S0023291222600316
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 85 / Номер выпуска 1
Страницы
38-46
Аннотация
Рассмотрено осаждение аэрозольных частиц из стоксова потока в фильтрах из нановолокон при числах Кнудсена \({\text{Kn}}\) ∼ 1. Эффективность улавливания частиц модельными фильтрами с 2D и 3D структурой определена численным моделированием с учетом эффекта скольжения газа на волокнах в зависимости от радиуса частиц \({{r}_{{\text{p}}}}\), параметров фильтров (радиуса нановолокон \(a\), плотности упаковки \(\alpha \) и толщины фильтра) и от условий фильтрации. Показано, что коэффициенты захвата частиц нановолокнами в 2D и 3D модельных фильтрах при одинаковой малой плотности упаковки \(\alpha \) < 0.02 практически не отличаются. Установлено, что зависимость проскока частиц от их радиуса при постоянной скорости, порядка нескольких см/с, при \({\text{Kn}}\) ∼ 1 проходит через максимум, соответствующий частицам с радиусом \({{r}_{{\text{p}}}}\~a\). Рассчитанные размеры наиболее проникающих частиц согласуются с экспериментом. Полученные результаты найдут применение при выборе аэрозолей для испытания фильтров из нановолокон.
Ключевые слова
Дата публикации
01.01.2023
Год выхода
2023
Всего подписок
0
Всего просмотров
25

Библиография

  1. 1. Черняков А.Л., Кирш А.А. Эффективность фильтрации волокнистыми материалами с неоднородным распределением зарядов на волокнах // Коллоид. журн. 2015. Т. 77. С. 792‒801.
  2. 2. Петрянов И.В., Кощеев В.С., Басманов П.И. и др. “Лепесток” – легкие респираторы. Издание 2-е, М.: Наука, 2015.
  3. 3. Кирш А.А., Кирш В.А. Улавливание аэрозольных частиц фильтрами из волокон, покрытых слоями вискеров // Коллоид. журн. 2019. Т. 81. № 6. С. 706‒716.
  4. 4. Xia T., Bian Y., Zhang L., Chen C. Relationship between pressure drop and face velocity for electrospun nanofiber filters // Energy and Buildings. 2018. V. 158. P. 987‒999.
  5. 5. Hung C.H., Leung W.W.F. Filtration of nano-aerosol using nanofiber filter under low Peclet number and transitional flow regime // Separation and Purification Techn. 2011. V. 79. № 1. P. 34‒42.
  6. 6. Kim H.B., Lee W.J., Choi S.C., Lee K.E., Lee M.N. Filter quality factors of fibrous filters with different fiber diameter // Aerosol Sci. Techn. 2021. V. 55. № 2. P. 154‒166.
  7. 7. Кирш В.А., Кирш А.А. Улавливание наноаэрозолей фильтрами из нановолокон // Коллоид. журн. 2021. Т. 83. № 6. С. 651‒659.
  8. 8. Kirsch A.A., Stechkina I.B. The theory of aerosol filtration with fibrous filters, Ch. 4, in Fundamentals of Aerosol Science / Ed. By Shaw D.T. N.Y.: Wiley-Interscience, 1978. P. 165‒256.
  9. 9. Choi H.Y., Kumita M., Seto T., Inui Y., Bao L., Fujimoto T., Otani Y. Effect of slip flow on the pressure drop of nanofiber filters // J. Aerosol Sci. 2017. V. 114. P. 244‒249.
  10. 10. Kuwabara S. The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers // J. Phys. Soc. Jpn. 1959. V. 14. № 4. P. 527‒532.
  11. 11. Кирш В.А. Гидродинамическое сопротивление трехмерных модельных волокнистых фильтров // Коллоид. журн. 2006. Т. 68. № 3. С. 293‒298.
  12. 12. Кирш В.А. Осаждение аэрозольных наночастиц в волокнистых фильтрах // Коллоид. журн. 2003. Т. 65. № 6. С. 795‒801.
  13. 13. Ландау Л.Д., Лифшиц И.М. Теоретическая физика, Т. 6 Гидродинамика. Издание 4-е, М.: Наука, 1988.
  14. 14. Albertoni S., Cercignani C., Gotusso L. Numerical evaluation of the slip coefficient // Phys. Fluids. 1963. V. 6. № 7. P. 993‒996.
  15. 15. Ролдугин В.И., Кирш А.А., Емельяненко А.М. Моделирование аэрозольных фильтров при промежуточных числах Кнудсена // Коллоид. журн. 1999. Т. 61. № 4. С. 530‒542.
  16. 16. Левич В.Г. Физико-химическая гидродинамика. М.: ГИФМЛ, 1959.
  17. 17. Берковский Б.М., Полевиков В.К. Вычислительный эксперимент в конвекции. Минск: “Университетское”, 1988.
  18. 18. Kirsch A.A., Stechkina I.B., Fuchs N.A. Effect of gas slip on the pressure drop in a system of parallel cylinders // J. Colloid Interface Sci. 1971. V. 37. № 2. P. 458‒461.
  19. 19. Pich J. Pressure drop of fibrous filters at small Knudsen Numbers // Ann. Occup. Hyg. 1966. V. 9. № 1. P. 23‒27.
  20. 20. Стечкина И.Б., Фукс Н.А. Исследование в области волокнистых аэрозольных фильтров. Расчeт диффузионного осаждения аэрозолей в волокнистых фильтрах // Коллоид. журн. 1967. Т. 29. № 2. С. 260‒265.
  21. 21. Кирш В.А. Осаждение субмикронных аэрозольных частиц в фильтрах из ультратонких волокон // Коллоид. журн. 2004. Т. 66. № 3. С. 352‒357.
  22. 22. Кирш А.А., Фукс Н.А. Исследования в области волокнистых аэрозольных фильтров. Диффузионное осаждение аэрозолей // Коллоид. журн. 1968. Т. 30. № 6. С. 836‒841.
  23. 23. Davies C.N. The separation of airborne dust and particles // Proc. Inst. Mech. Engineers, London. 1952. V. 167. № 5. P. 185‒213.
  24. 24. Reai M., Drolet F., Vidal D., Vadeiko I., Bertrand F. A Lattice Boltzmann approach for predicting the capture efficiency of random fibrous media // Asia-Pacific J. Chem. Eng. 2011. V. 6. № 1. P. 29‒37.
  25. 25. Lee K.W., Liu B.Y.H. Theoretical study of aerosol filtration by fibrous filters // Aerosol Sci. Techn. 1982. V. 1. № 2. P. 147‒161.
  26. 26. Кирш В.А., Кирш А.А. Влияние наноиголочек на волокнах и частицах на эффективность фильтрации аэрозолей // Коллоид. журн. 2021. Т. 83. № 3. С. 293‒301.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека